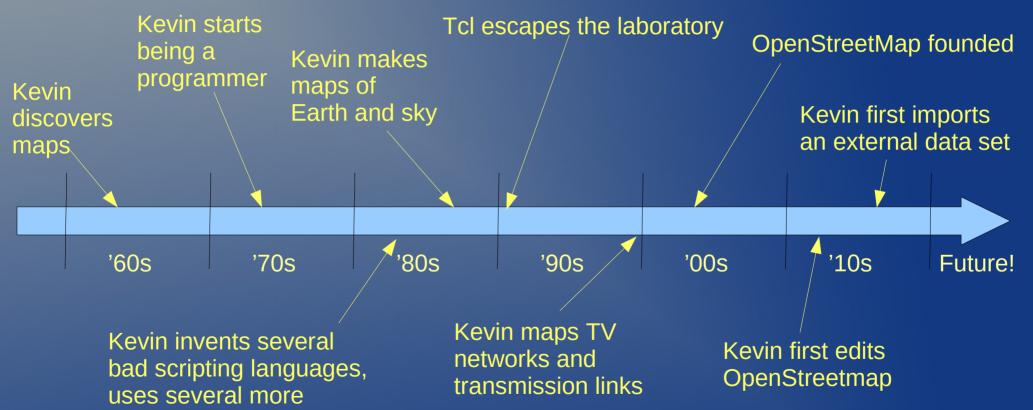
Mapping the Tcl world: using Tcl to curate OpenStreetMap

Kevin B. Kenny 5 November 2019



How'd we get here? I'm a Tcl geek and a map geek!

Timeline of geekiness

5/29/1964

Bradley

100

000

E1100=

Dookou Tower

Prorate.

1032

@114/0

1040

A ODATAN

Water

Lake

THE FOLLOWING NEWS EVENT WAS REPORTED IN THE NEW YORK TIMES ON THE DATE THAT YOU REQUESTED:

AST.

TANO

The 1960's

Port Chester

noroneck

New Rochelle Glen Cave

Port Vashington

APRIL 14, 1963: 30,000 PILGRIMS VISIT JERUSALEM FOR EASTER; POPE JOHN PRAYS FOR TRUTH & LOVE IN MAN

55

Conformant SYMAP

Proximal SYMAP

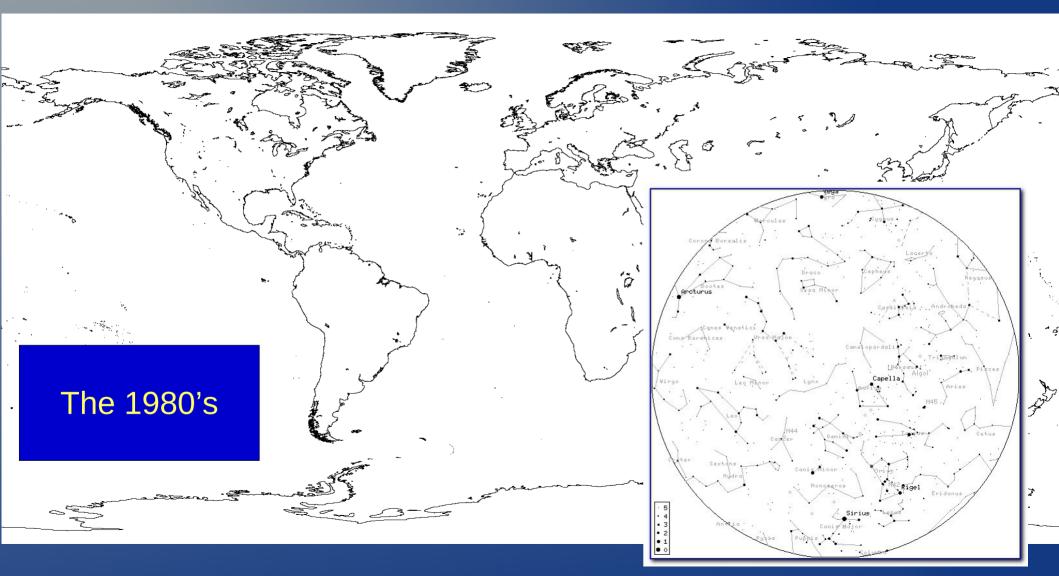
Contour SYMAP

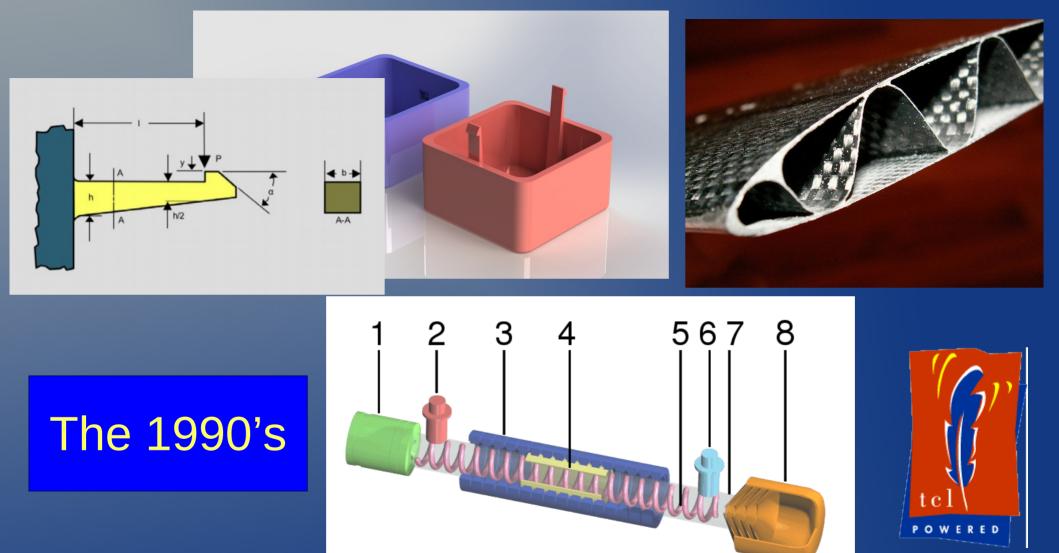
Trend Surface SYMAP

The 1970's

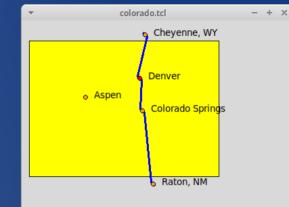
Draw with electrons 10 inch diagonal screen "Instant" (well, minutes) gratification

Draw with a pen High-resolution output Took hours!




Draw with electrons 10 inch diagonal screen "Instant" (well, minutes) gratification

Draw with a pen High-resolution output Took hours!



Map source: Wikipedia user '7.11brown', license CC-BY-SA 3.0

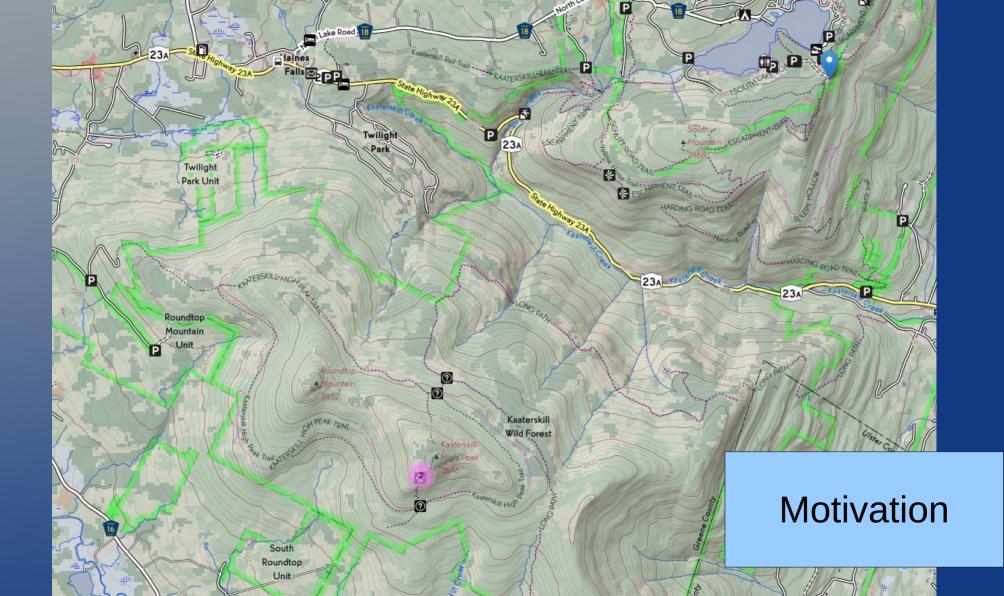
Hobby projects around year 2000

Prompted by Richard Suchenwirth-Bauersachs: "Mapping Colorado" on the Wiki

- Lots of pieces, no really usable ecosystem.
- TclWorld
- Shapefile reader
- Tklib map::slippy
- Tcllib mapproj
- ... and so on

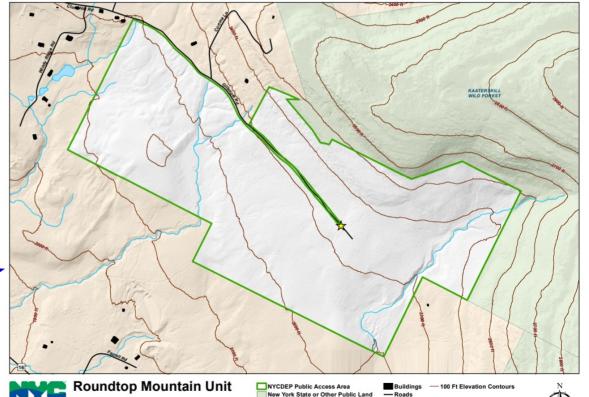
Andrey Shadura GSoC 2010 Tcl/Tk OpenStreetMap editor Handler for the OSM-XML file format Again, not integrated in the ecosystem Trouble wth multipolygons (Tk's problem, not Andrey's)


The 2010's: OpenStreetMap


- Got back into hiking
- Appalled at the state of trail maps
- Only citizen-mappers can fix!
- Started contributing to OSM

Too much land, too few mappers!

- One example: Adirondack Park
 - Area: 24300 km² (not quite Belgium-sized)
 - Population: <130000
- Need external data sources



Example: New York City recreational lands

	Greene County (cont.)		
Inting by Bow Only			
RECREATION AREA	TOWN	LOCATION	WMU
John Chase Brook	Lexington	RT 13	4P
Katydid Creek	Jewett	Shad Rd.	3A
Lake Heloise	Windham	Nauvoo Road	4R
Lanes Brook	Hunter	BEECHER RD	ЗA
Lewis Creek	Ashland	Mail Rte Rd - County Route 5	4R
Little Westkill	Lexington	Truesdell Rd.	4R
Maben Hill	Lexington	NYS Route 23A	4R
Macumber Road	Prattsville	Macumber Rd., Prattsville	4R
Maplecrest	Windham	County Route 40	3A
Maplecrest Road	Windham	County Route 40	3A
Mill Street	Windham	Mill St	4R
Mitchell Hollow ¹	Windham	Siam Rd & Mitchell Hollow Rd.	4R
North Ashland	Ashland	County Routes 10 & 32C	4R
North Lexington	Lexington	County Route 23C & VanEtten Rd.	4R
Old Road	Windham	Dusty Rd.	4R
Partridge Road	Ashland	NYS Route 10 & Partridge Rd.	4R
Patterson Ridge	Ashland	NYS Route 23	4R
Pine Island Mountain	Lexington	Unknown	3A
Pinekill Meadows	Windham	Pinekill Meadows Rd.	3A
Platte Clove Road	Hunter	County Route 16	3A
Railroad Bend	Hunter	Ski Bowl Rd.	3A
Red Falls	Prattsville	Route 23	4R
Red Kill Headwaters	Halcott	Travis Faulkner Rd.	4R
Richmond	Windham	County Route 10	4R
Roarback Brook	Lexington	Beech Ridge Road	4R
Roaring Kill	Hunter	Mink Hollow Rd.	3A
Roundtop Mountain	Hunter	Gillespie Rd.	3A
Rusk Mountain	Jewett	DEMING RD	4R
Schoharie Creek	Prattsville	NYS Route 23A	4R

Private Land

Streams

Wetlands

Rivers, Ponds, Lakes, and Reservoirs

0.175

0.35

Environmental Protection Updated by BWS GIS 820/2019 ↓ Long: 74°6′49.975″W Lat: 42°10′17.294″N Uses: Hiking, Hunting & Trapping

^a PAA - Public Access Area ^b DUA - Day Use Area

10/24/2019

Step 1: Scarf down all the data Can we make sense of the list? exec pdftohtml open_rec_areas.pdf Looking at the result, we can extract this mess:

Roundtop Mountain
 Hunter
 Gillespie Rd.
 3A
 Y
>b>
 Y
 330

Horrible looking HTML, but tdom can surely parse it.

A few hours later: there's a script to download the list and all the maps and tag them with metadata.

Step 2: Make sense of PDF maps

- (This was actually the first step... the alternative would have been a Freedom of Information demand!)
- Would be extremely challenging to georeference the PDF maps for tracing. (Too little context).
- Maybe they were printed from ArcGIS? Let's see if they're GeoPDF. A command line tool from GDAL (Geospatial Data Abstraction Library) will inspect them:

\$ ogrinfo pdfs/Roundtop_Mountain.pdf

(drum roll please...)

Step 2: Make sense of PDF maps

Yes, GDAL can post these as GeoPDF:

\$ ogrinfo pdfs/Roundtop_Mountain.pdf
Metadata:

CREATION_DATE=D:20160428103334-05 CREATOR=Esri ArcGIS

- 1: Other_2
- 2: Layers_Other
- 3: Layers_Labels_100_Ft_Elevation_Contours_-_Default
- 4: Layers_PAA <
- 5: Layers_Roads
- 6: Layers_Streams
- 7: Layers_Rivers__Ponds__Lakes__and_Reservoirs
- 8: Layers_100_Ft_Elevation_Contours
- 9: Layers_Buildings_EOH

No Freedom of Information demand needed! (Whew!)

Most of these layer names make sense in terms of map features.

> 'PAA' turns out to be 'Public Access Area,' which is the boundary we want.

Step 3: Get the map data where we can work with it. PostgreSQL.

- Much of the existing OpenStreetMap infrastructure already uses it.
- Very strong, GDAL-based, functions and index infrastructure for dealing with geospatial data.
- SpatiaLite (at least when I did this project) not nearly as well developed.
- So, one at a time, we pour an individual map into a PostgreSQL table:

```
exec ogr2ogr -append -t_srs EPSG:3857 -f PostgreSQL \
    PG:dbname=gis $fileName \
    -nln intake -nlt MULTILINESTRING \
    Layers_PAA
```

Step 4: Whoops! Topology!

- Input data are just boundary lines, not polygons.
- Lines broken into short segments
- Some lines look like noisy GPS tracks of someone walking a boundary
- Some adjacent parcels overlap
- And so on...

Tcl doesn't have computational geometry facilities to clean this up. Tcl doesn't need computational geometry facilities to clean this up. Do it in PostgreSQL, command it with TDBC.

A couple of pages of Tcl (took a few days to design) take care of it.

Step 5: Review and conflation

- This is the hard part requiring human analysis.
- Needs an editor for OSM data.
- Andrey Shadura (Andrew Shadoura) wrote one it Tcl as a GSoC project
 - No longer maintained
- An OSM editor is actually a huge ecosystem. Better to use an existing one.
- Several OSM editors support an HTTP-based API to command them.
- The http and tls packages are already in the mix.
- So, dump the data into XML (using an external ogr2osm.py program), and command an OSM editor to import it as a new layer, then do the rest by hand in the editor.

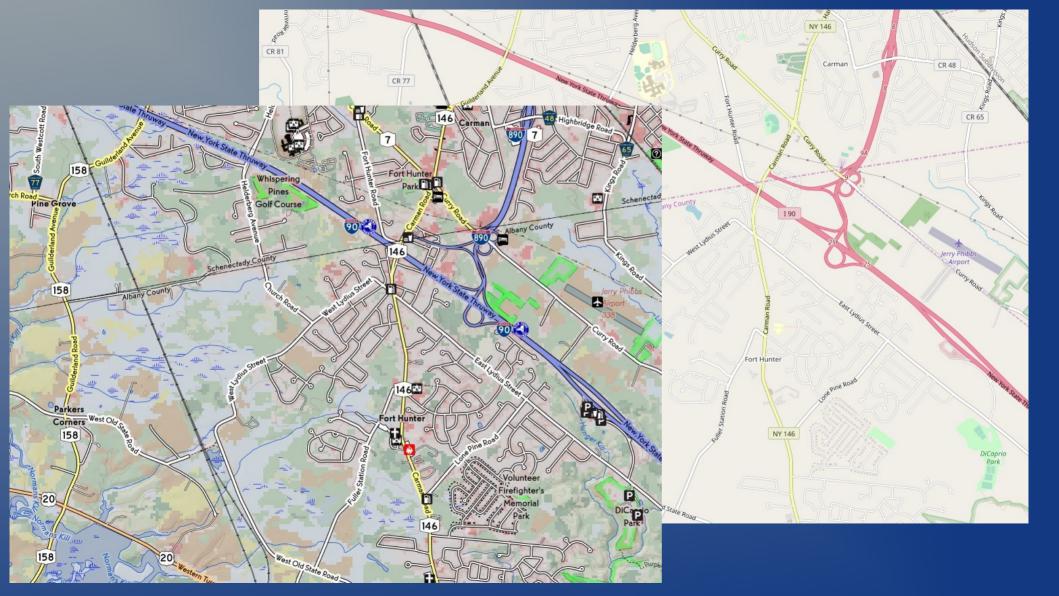
Fine point – better management of conflationFor a big, complex import, (the New York City recreation data wasn't that big), developed a Tk GUI for managing conflation.

•	review.tcl - + 3	×	
Changed multipolygons-		_	
ROGERS ROCK CAMPGROUND			
BLACK RIVER WILD FOREST			
WILLOWEMOC WILD FOREST			
FULTON CHAIN WILD FOREST			
MOUNT VAN HOEVENBERG WINTER RECREATION AREA			
LAKE GEORGE ISLANDS CAMPGROUND LAKE GEORGE WILD FOREST			
COLCHESTER FP DETACHED PARCEL			
SHEEPSHEAD ISLAND			
NICKS LAKE CAMPGROUND			
•	-		
	Load Differences		
-Tags		_	
	••••	ī	
Key ✓ name	Value Mount Van Hoevenberg Winter Recreation Area		
v website	http://adirondackscenicbyways.org/resource/olympic-sports-complex.html		
✓ boundary	protected area		
governance	government_managed		
operator	New York State Department of Environmental Conservation		
✓ related_law	New York State Constitution, Article XIV		
site_ownership	state		
source	http://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1114		
NYSDEC:updated	9999-99		
protection_title	Intensive Use		
 protect_class protection object 	21 recreation		
✓ landuse	recreation ground		
	recreation_ground		
Visit I RI	Apply tags Copy tags Finish object Quit		

Select an object – loads it into the editor and downloads the surrounding region from OSM

Creates an additional layer with differences between the selected object and the best matching object in current data Chooses keyword=value tags to apply to the selected object

Other actions – visit the area's web site, apply the keyword=value tags to the object, copy the tags to the clipboard, mark the object as 'done' in the database, end the session.


Another project: render North American numbered highways

- 4 or more numbering systems overlaid
- Sign shape is important
- Many route concurrences

- Tcl script to handle data changes, generate SVG graphics.
- Concurrency sets calculated at render time in horrible PostgreSQL query.

 Serviceable for me, much work remains to deploy at scale

https://github.com/kennykb/osm-shields

Whither Tcl/Tk?

Tcl/Tk has played a tiny role in all this.

No more than a couple of thousand lines of code in any import project.

All glue – it doesn't really do much itself, it orchestrates the big applications that do the heavy lifting.

We won't rule the world this way!

But isn't this what Tcl/Tk is *for?* It's very, very sticky glue, and good at connecting things together.

Thank you!