
 

  
Abstract— Advances in nuclear electronics can result in data 

rates several orders of magnitude higher than those of traditional, 
legacy electronic systems.  Several technical developments are 
therefore required for both online and offline data handling.  
Included in those developments is a new Tcl MPI package and the 
retrofitting of NSCLSpecTcl to use that package to perform 
massively parallel histogramming. 
 
 

I. INTRODUCTION 

his paper will introduce the types of science done at the 
National Superconducting Cyclotron Laboratory (NSCL).  

Analog data acquisition electronics will be described and 
contrasted with modern “digital” electronics.  Modern 
electronics support experiments that we are not able to 
perform with legacy analog electronics.  This capability comes 
at a cost.  Digital electronics can result in significantly higher 
data rates than legacy analog electronics. 
 
An upcoming experiment at the NSCL focused on decay 
spectroscopy will be instrumented with modern digital 
electronics and cannot be performed with traditional 
electronics. This experiment is anticipated to take data at 
continuous rates of up to 200MB/sec resulting in an aggregate 
data set of over 100TB of data. The planned online and "near-
line" data flow of this experiment provides challenges 
(pronounced opportunities) to explore methods of handling 
data both online and "near-line".  This experiment will be 
described, as well as the data flow and the challenges it 
presents.  
 
Massively parallel computing will feature heavily in data for 
digital electronics.  We have written libraries and frameworks 
to support parallel computation that can be easily switched 
between threaded parallelism and massively parallel cluster 
parallelism.  We have also written an extended Tcl shell that 
supports massively parallel Tcl driven applications. 
 

II. THE NSCL AND THE SCIENCE WE DO 
In this section we’ll describe rare isotope experimental 

nuclear science performed at the NSCL. 
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A. Nuclear Science with Rare Isotope Beams at NSCL 
The bulk of experimental nuclear science is done by colliding 
an accelerated beam of ions onto a target or, in the case of 
colliders, accelerated ions moving the opposite direction.  For 
much of the history of experimental nuclear science, the 
accelerated particles have been stable isotopes that are common 
in nature.   
 
Two techniques accelerate isotopes that are not stable; 
projectile fragmentation [MOR98], and isotope separation 
online (ISOL)[LIN04].  In projectile fragmentation, a stable 
beam strikes a production target conservation of momentum 
implies that the resulting reaction products will continue in the 
beam direction with most of the stable beam momentum.  A 
reaction product separator then selects the desired isotope 
which is transported to the experiment.  With ISOL, the reaction 
products from the production target are stopped in a thick target, 
chemically extracted and then re-accelerated.  The NSCL 
produces its rare isotope beams via projectile fragmentation. 
 
Rare isotope beams provide for several areas of scientific study 
that are not possible with stable beams.  These include 
explorations of nuclear structure and shape far from stability.  
Furthermore, many of the isotopes we experiment with are 
believed to exist in the dense matter of supernova formed from 
stellar core collapse as well is in the crusts of neutron stars.  
These environments are where astrophysicists believe that 
elements heavier than iron are formed.  

 

B. The NSCL 
The NSCL is a running experimental facility on the campus of 
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Michigan State University.  A schematic of the facility is shown 
in Figure 1.  Funding for the operation of the NSCL is provided 
by the National Science Foundation. 
 
The coupled cyclotrons at the left of Figure 1 produce stable 
primary beams of elements ranging from Oxygen to Uranium 
at energies from 80MeV/A to 170MeV/A.  The ions from these 
stable beams strike a production target, typically Be,  near the 
entrance of the A1900 fragment separator[Mor03].  The A1900 
selects the desired rare isotope which is then transported to one 
of several expermiental areas shown to the right of the A1900 
in Fig. 1. 
 
   
Figure 2 shows a chart of the nuclides with the stable primary 
beams that have been produced and used at the NSCL.  The 
black squares on that diagram represent stable isotope beams.   
The gray squares represent unstable beams of rare isotopes. 
Over 900 rare isotope beams have been used in experiments 
while a total of about 1000 have been produced or observed.  Of 
these beams 47 have been stopped and used either in stopped 
beam experiments or reaccelerated low energy experiments.   
 
  
 

 
 

III. DATA ACQUISITION THEN AND NOW 
This section will examine how data taking has evolved in 

nuclear science.  We start by describing how data taking has 
been historically done.  We then describe advances in 
electronics that we believe will push our data rates to as much 
as two orders of magnitude faster than they are at the NSCL. 

The products of nuclear collisions are not directly 

observable.  Instead we rely on the interaction of those products 
with bulk matter.  For example, charged particles passing 
through detectors leave behind an ionization trail due to the 
electrons they knock out of atoms in the detector material.  An 
electric field can then be used to cause those electrons to drift 
and be collected.  The result of this collection is an electric 
pulse. 
  These pulses are quite weak and fast, perhaps on the order of 
nanoseconds (10-9 seconds) wide. In traditional “analog” 
systems, these pulses are amplified and shaped into pulses a few 
volts high and perhaps a microseconds across.  In a parallel 
electronics path, discriminators are used to convert the analog 
pulses into logic pulses that are suitable as inputs to trigger logic 
and, with proper timing, as gates to peak sensing or charge 
integrating ADCs.  Each of those ADCs produces one value per 
pulse and then, only if the pulse lies within the ADC gate. The 
electronics required to condition raw detector signals and time 
gates appropriately can be quite complex. 

Figure 1 Facility layout for the National Superconducting Cyclotron Laboratory along with many of the available experimental devices.  Colors 
indicate the energy of the rare isotope delivered to experimental systems in those areas.   

Figure 2 Chart of the nuclides showing beams produced at the 
NSCL to date. 



 

The advent of fast, high resolution flash ADCs (100+ MHz 
at 14 bits wide) and large FPGAs has made it possible to discard 
most of the analog electronics described above, replacing it 
with flash ADCs and logic and digital signal processing 
implemented in FPGAs.   This results in a simplified signal 
chain for one channel that looks like Figure 3 

 

 
In this design, the FADC is continuously digitizing.  When 

the FPGA determines a trigger condition has occurred, it can 
look back in time at the samples recorded to ensure the full 
signal pulse is captured.  This ability to look back in time at a 
digitized waveform eliminates most, if not all signal timing 
delays.  The FPGA can then perform the peak sensing and peak 
integration operations performed by early analog digitizers.  If 
needed, the full signal trace is also available for further 
processing.  These electronics chains are called digital 
electronics by experimental nuclear scientists because the 
FADC and FPGA replace what used to be complex chains of 
analog electronics. 

It is the ability, and sometimes need, to capture signal traces 
that inflates the bandwidth and storage requirements of modern 
nuclear science experiments.  Instead of providing one or two 
values for each event or each channel, each channel may 
provide 100 or more trace samples depending on the length of 
the capture interval and the frequency of the FADC.  The ability 
to capture traces allows us to perform experiments that are not 
possible otherwise. 

 While a typical NSCL experiment lasts one week and 
captures between 10GB and 10TB of data, we anticipate that 
experiments with digital electronics that same week will 
capture between 1TB and 1PB of raw data.   Furthermore, 
during an experiment it’s important to process this data online 
and near-line (near-line processing refers to the analysis of data 
that was taken in an early stage of the experiment while the 
experiment is still running).  This processing is used, not only 
to ensure the experimental systems are working but also to 
enable mid-run decision making. 

 
 

IV. E17011 – LIFETIME MEASUREMENTS IN NEUTRON RICH 
NUCLEI 

 
E17011[Cri] is an experiment scheduled to run at the NSCL 

in early 2020.  We’ll first examine the science goals of this 

experiment and look at the experimental apparatus.   We’ll then 
examine the full online and near-line data processing chain and 
its performance requirements.  Online processing refers to 
analysis done on the data as it passes through the data 
acquisition system.  Near-line data processing refers to analysis 
done during the experiment on data files already acquired.  
Finally we will describe some of the methods we will use to 
meet the performance requirements of those demands.  This 
part will segue into the next part which describes in detail 
mpitcl, which provides support for massively parallel 
computing for Tcl based applications. 
 

A.  Experimental aims and setup 
Understanding the interplay between single-particle and 

collective effects is a continuing thrust in nuclear science to 
address questions articulated in the recent long range plan 
regarding the organization of subatomic matter and the 
emergence of simple patterns in complex nuclei.  The relative 
energies between different single-particle orbits is a continuing 
question and the size of the energy gap located at a neutron 
number of N = 50 shell gap is of interest for its role in the r-
process [Bar08] and nuclear existence [Erl12]. The energy gap 
can be probed by identifying nuclear states corresponding to the 
normal filling of single-particle levels and those that involved 
an excitation of neutrons across the N = 50 energy gap. The 
coexistence of such states at similar excitation energies has 
been observed in the 80Ge nucleus [Got16].  The two types of 
states to be studies both have a spin and parity of 0+ and can be 
populated through the beta decay of a neutron-rich 80Ga 
nucleus.  The beta-decay process will turn a neutron in 80Ga 
into a proton and convert it to 80Ge while populating a range of 
excited nuclear states that will subsequently decay emitting 
photons or, potentially, electrons.  

Rare isotope research facilities such as the NSCL can create 
these neutron rich nuclei and allow researchers to perform 
experiments with them. 

E17011 examines the properties of 80Ge, a neutron rich 
isotope of Germanium.   A beam of 80Ga( neutron-rich 
Gallium) will be brought to rest in a monolithic CeBr3 (Cerium 
Bromide) scintillator detector read out with a 16 by 16 pixelated 
photomultiplier detector.   

The β-   emitted by the decay of 80Ga will result in a pulse in 
the CeBr3 and occasionally the beta-decay process will 
populated the excited 0+

2 state.  When the 02
+ state de-excites it 

will emit a second electron that will result in a pulse slightly 
delayed in time with respect to the beta-decay electron (see 
Figure).  Measuring the time between these two pulses gives an 
exponential distribution from which the lifetime of the 02

+ state 
can be extracted as has been done previously [Cri16, Suc14].  
This lifetime provides information about difference in the mean 
square charge radius between these two states in 80Ge. 

Theory predicts that this lifetime is about 50ns.  Since 
traditional analog digitizers have dead-times of microseconds, 
they cannot easily be used to perform this measurement.  What 
we can do, however, is capture signal traces from the CeBr3 

Figure 3Modern digital electronics chain 



 

detector using modern digitizers of the sort shown in Figure 3.   

    
 The originally proposed experimental setup is shown 
schematically in Figure 5. The beam goes from left to right in 
this figure. The CeBr3 detector is at the center of 16 detectors 
of the Segmented Germanium (SeGa) array [Mue01] shown as 
the blue cylinders.  SeGA, and an array of 16 LaBr3 [Lon19] 
detectors are used to directly measure the gamma-ray transition 
energies. 

 Upstream of SeGA a stack of PIN diode detectors that do 
particle-by-particle identification of the beam particles being 
deposited in the CeBr3 detector based on energy loss and time-
of-flight measurements.  This particle identification allows us 
to know exactly what is being implanted into the CsBr3 
detector since the beam delivered to the final setup will 
contain a range of isotopic species 

B. The online and near-line analysis chains. 
 
 
In order to understand the data from the experiment 
sufficiently to know if the experiment is working properly we 
need to perform the following analysis in a combination of 
online and near-line processes. 

• Hits from the digitizers must be combined in time 
coincidence into events varying in size depending on 
experimental need between a few hundred 
nanoseconds and a few microseconds.  This process 

is known as event building.  Note that the digitizers 
we use emit data we call hits that is timestamped but 
these hits are not guaranteed to be time ordered 

• The data flow can be reduced by requiring that PIN 
detector hits have a minimum threshold energy 
indicating the particle was a heavy ion.  This process 
is known as software triggering.  We do not know in 
advance the fraction of data software triggering will 
retain. 

• The traces from the CeBr3 detectors must be analyzed 
to determine if they are single or double pulses (the 
bulk will be single pulses). For the double pulses, the 
time between pulses and the heights of both pulses 
must be determined. 

• Implantation events must be correlated with the 
corresponding decays. 

• Live data must be recorded to disk for near-line and 
offline analysis.  The files recorded contain time 
sequenced data for each event allowing a complete 
reconstruction of the experiment in offline analysis. 

 
Figure 6 Shows our proposed online data flow.  While the 

trigger rates are expected to be a relatively modest 3 KHz, the 
data flow is expected to be about 200MB/sec.    This is due to 
traces we will take and the high expected channel multiplicities.  
Note that the NSCLDAQ data flow scheme allows us to treat 
each of the data flow arrows in Figure 6 as a test point with no 
impact on data flow.  Note that the pulses shown in Figure 4 can 
overlap heavily. 

 

C. Meeting rate requirements 
The first bottleneck in Figure 6 is the process labeled 

(“Append fits for 1, 2 pulses to the sum signal”). In addition to 
signals for each pixel, digitized at 250MHz, the detector 
provides a signal summing the energies in all pixels which we 
will digitize at 500MHz.  Online, our goal is only to fit the 
energy sum signal.  The pixel signals will be fitted in near-line 
analysis. 

Fitting the traces is used both to extract the key features of 
those pulses (time and peak height) as well as to provide 
determine if the traces contain a single or double pulse.  The 
following empirical functional forms are used to fit the pulses: 

𝑦𝑦 = 𝐶𝐶 + 𝐴𝐴𝐴𝐴−𝑘𝑘1(𝑥𝑥−𝑥𝑥0)

1+ 𝐴𝐴−𝑘𝑘2(𝑧𝑧−𝑥𝑥0)   
                                                                  (2) 

Figure 4 Detector trace from a similar experiment showing the 
beta-decay electron between 68Co populating the excited 02+ 

state in 68Ni which decays a short time later through the 
emission of an internal conversion electron or internal pair 
formation [Cri16]. 

Figure 5 E17011 experimental setup 

Figure 6: Data flow for E17011 



 

𝑦𝑦 = 𝐶𝐶 + 𝐴𝐴1𝐴𝐴
−𝑘𝑘1(𝑥𝑥−𝑥𝑥0)

1+ 𝐴𝐴−𝑘𝑘2(𝑧𝑧−𝑥𝑥0)  +  𝐴𝐴2𝐴𝐴
−𝑘𝑘3(𝑥𝑥−𝑥𝑥1)

1+ 𝐴𝐴−𝑘𝑘4(𝑥𝑥−𝑥𝑥1)  
 
The first of these functions represents a single pulse and the 
second a double pulse.   The trace has a DC offset C.  For each 
pulse, the denominator is a logistic function that is used to 
model the rising edge of the pulse, the numerator contains a 
scale factor related to the pulse height and an exponential decay 
that models the falling edge of the pulse.  The values of 
importance are A, A1, A2, x0 and x1.  For a single pulse the 
actual pulse amplitude is gotten by evaluating the pulse formula 
at: 
 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑥𝑥0 + ln �𝑘𝑘2

𝑘𝑘1
� /𝑘𝑘2       (3) 

 
Fitting the sum trace requires in excess of 3ms/trace using the 
Levenberg-Marquardt[Lev] fit routines in the GNU Scientific 
Library.  The ratios of the chi square errors of the fit between 
the single and double pulse provide a heuristic for determining 
if the pulses are double or single. 
 
The next bottleneck is our ability to extract parameters and 
implantation/decay correlations from the data so that 
histograms can be generated and visualized.  The actual 
histogram operations are not a bottleneck.  It is clear that to 
achieve our online analysis goals we’ll need to make use of 
parallel processing. 
 
1) Parallel libraries and programs – classifying and fitting 
 
In order to meet the performance requirements of online 
analysis while allowing us to re-use code for near-line analysis,  
we have written libraries to support parallel processing and 
framework programs that hide the nature of parallel processing 
from the user.  While these are targeted at E17011 they are, in 
fact quite general.  
 
The libraries themselves abstract communication into 
communication patterns (e.g. fanout, fanin, and pipeline) and 
separate these patterns from the underlying transport.  At 
present we support 0MQ[Zmq] and the Message Passing 
Interface[Mpi] (MPI) as transports. 0MQ and its high 
performance inproc transport targets threaded parallelism while 
MPI targets process parallelism on massively parallel cluster 
computing.  Note that nothing in our libraries precludes the use 
of 0MQ in distributed parallel computing. 
 
Online analysis will use threaded parallelism, while near-line 
and offline will use MPI parallelism.  The libraries allow single 
programs to be written that can select their parallelization 
strategy (threaded/0MQ or cluster/MPI) at run-time.  We have 
written several programs that provide the capability to plug-in 
user, application specific code that is unaware of the parallel 
nature of the underlying program.   These programs can be told 
on the command line whether or not to use threaded or MPI 
parallelism. These framework programs accept user code built 
into a shared object library which is loaded at run-time. 

 Two programs we use in the online data flow are: 
• A classifier:  User code assigns a uint32_t value for 

each event.   This is the first stage of event selection.  
The second stage is a generic selection of events 
whose classifications meet specific criteria.  
Classification can be arbitrarily complex while 
selection is usually quite simple. 

• An event editor.  User code is given an event fragment 
and generates a replacement for that fragment.  This is 
used online to append fits information to hits and 
offline to strip traces from event fragments that have 
already been fit. 

 
Since for all of our programs, events can be processed 
independently, the framework programs all have the same 
general structure shown in Figure 7 

 
 The programs are parallel pipelines with data flowing from 
left to right.  The data distributor, fans out blocks of events to 
workers that operate on them in parallel.  The workers fan in 
blocks of modified events to a thread/process that re-sorts the 
data by timestamp and then passes them on to a thread/process 
that outputs them.   

• In most cases each event can be operated on 
independently of all other events allowing the workers 
to be embarrassingly parallel. 

• In order to efficiently balance messaging and 
processing, the programs have a command option to 
let the user select the number of events in each block 
of events sent to workers. 

• A pull protocol is used by the workers to get data from 
the distributor.   

• To allow the correlation of implantations with 
corresponding decays, we re-sort the data back into its 
original order before outputting it. 

 

Figure 7: Structure of event parallel programs. 



 

We used the event editor with user code that fits the energy 
sum signal to check the online performance of the fitting part of 
the dataflow.  The program was run on a system with 40 cores 
of Xeon 6148 clocked at 2.4Ghz.  This is a system we intend to 
use for the experiment.   Figure 8 shows the event processing 
rate as a function of the number of worker threads: 

 

This figure shows that: 
• We meet the online rate requirements using between 

4 and 6 worker threads. 
• There is a knee when we hit the number of actual 

processor cores.  Additional performance gains due to 
hyper threading don’t add nearly as much as 
additional cores do. 

 
Near-line, we’d like to fit all 256 pixels at least at the incoming 
data rate.   Due to the monolithic nature of the central CeBr3 
detector, most pixels are expected to trigger for each event.  
This will require about 2500 cores.  The event editing program 
fitting can run either threaded parallel or MPI parallel on a 
massively parallel cluster.   The NSCL has a modest cluster of 
around 200 cores called Fireside.   
 Michigan State University, has a unit called the Institute for 
Cyber Enabled Research[Icer] (ICER).  Among other things, 
ICER provides a cluster of over 23,000 cores available for use 
by MSU researchers.  We hope to make use of this facility for 
near-line analysis during the run. 

Figure 9 shows the performance of the same fit program 
using cluster parallel computing both on Fireside and at ICER. 
 
   Several points to note: 

• The ICER cores are faster than the NSCL cores. 
• Both plots have performance knees.  This is because 

the cluster nodes are heterogeneous. As the number of 
cores required increases we get relegated to the more 
plentiful, older cores. 

 
Our performance measurements at ICER duplicated the NSCL 
software environment using Singularity[Sylabs] containers.  
Singularity is MPI aware.  Unfortunately the version of 
singularity available at ICER has a bug that makes running MPI 

applications with more than 64 processes unreliable.  ICER is 
in the process of updating their singularity runtime to allow us 
to extend our scaling measurements. 

  
2) Parallel online histograming – NSCLSpecTcl. 
 

At NSCL, our primary histograming and visualization tool 
for online data analysis is NSCLSpecTcl[Fox04].  This is a Tcl 
driven program.  The experimenter supplies a logical pipeline 
of code that accepts raw events as input and produces 
parameters, both raw and synthetic as output.  A generic 
histograming kernel increments histograms.  NSCLSpecTcl 
specific commands allow users to dynamically create 
histograms, create conditions and apply arbitrary logical 
combinations of those conditions to control which events cause 
histograms to be incremented.  Tk allows users to create 
sophisticated application specific GUIs. 

 
The structure of NSCLSpecTcl is shown in Figure 10. 

 Geordano Cerizza has forked the NSCLSpecTcl codebase and 
created a threaded version of NSCLSpecTcl that completely 
retains its interactive nature.  His work allocates one thread to 
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the data source and buffer decoding. User event then become a 
set of parallel workers.  Each worker gets a block of events and, 
when parameters for that block of events have been extracted, 
the resulting lists of event parameters are sent to the main thread 
via Tcl_ThreadQueueEvent. 
 One problem with this and other event parallel schemes is 
that for these implantation/decay experiments, events are not 
completely independent of each other.  At some point in the 
analysis, implantation events must be correlated with their 
associated decays.  In this and other fully event parallel 
programs, implantations may have their decays in different 
blocks of events, processed by other workers. 
 For E17011, where the 80Ga half-life is a bit less than 1.7 
seconds, we can make the blocks of data sufficiently large (an 
800Mbyte data block represents about 4 seconds of data) to 
allow a sufficient number of implantation and decay 
correlations to be made to understand the experiment online and 
near-line. 
 Figure 11 shows the performance of threaded SpecTcl on a 
simple analysis.  This analysis just unpacks the raw parameters 
from the fragments of each built event.  Note that the actual 
online analysis will be quite a bit more complex. 
 

 
 
The roll-off after about 16 processors at about 3.5-3Gbytes/Sec 
represents data transfer limits from the local SSD on which the 
event data were stored. 

V. MPITCL AND  MASSIVELY PARALLEL TCL PROGRAMMING  
 

This section introduces an MPI aware Tcl interpreter. The 
Message Passing Interface (MPI) is introduced.  We’ll describe 
existing work to make MPI accessible to Tcl.  We’ll then 
describe the features of mpitcl and provide simple examples of 
mpitcl scripts.  Finally we’ll present a real application of mpitcl 
to an existing program, NSCLSpecTcl allowing it to run in a 
cluster parallel environment.  MPI consists of a specification 
and language bindings that make the functions and data types 
described by that specification available to specific 
programming languages. 

 

A. Message Passing Interface 
The message passing interface, or MPI is a distributed 

parallel programming system.   MPI programs run the same 
process in parallel on multiple nodes or cores within those 
nodes.  MPI is supported on virtually all massively parallel 
cluster computing environments.  OpenMPI and MPICH are the 
two common implementations of the MPI specification.  Both 
are open source implementations of the MPI standard.  Our tests 
all use the OpenMPI libraries. 
  In MPI processes exchange messages using an opaque 
structure called a “communicator” When the MPI program is 
run a single communicator: MPI_COMM_WORLD is defined.  
Subsequently the program can define additional communicators 
and use these communicators to create process groups that 
communicate internally. 
 Within a communicator a process has a rank.  A process’s 
rank is just an integer number that runs from 0 to n-1 where n 
is the number of processes in that communicator.  
 Sending a message requires: 

• A communicator. 
• The rank of the receiving process within the 

communicator. 
• A message tag that can be used to identify the type of 

message being sent. 
• A buffer. 
• A data type indicating the type of data in the block 
• The number of data items in the block. 

 
When receiving messages, processes can either specify exactly 
the tag and rank from which to receive a message, allowing 
for complex application protocols, or provide wild cards for 
either the tag or the rank (note that even with a wild card 
source rank messages receipt will be restricted to those 
processes within the communicator specified in the receive 
call. 
 

MPI defines primitive data types and allows users to define 
their own data types. 
 
1) Existing MPI Tcl packages. 
 

The MPI Specification is large, rich and complex.  Version 3 
of the specification defines approximately 600 API functions.  
The size and complexity of MPI that requires some choices 
when exposing the MPI to Tcl applications.  

Axel Kohlmeyer created a Tcl MPI package[Kohl].  He 
decided to encapsulate a subset of the MPI specification.  His 
work is somewhat SWIG providing Tcl verbs that represent 
bindings to raw MPI calls. 

Kohlmeyer’s tclmpi package provides Tcl bindings to 21 
MPI API functions.  Tclmpi also provides a tclmpi namespace 
with values for the predefined communicators as well as MPI 
data types and a Tcl specific data type. 
 
While the subset of MPI implemented by tclmpi reduces 
somewhat the complexity of of the MPI specification, raw MPI 
is still exposed to script writers. 
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2) mpitcl – NSCL style. 
 
In designing the specification for mpitcl, an MPI aware shell, 
we wanted to hide MPI as much as possible from the script 
author.  We thought a bit about what Tcl-ish MPI 
encapsulation might allow script to do. 
 We came up with the following requirements: 

• Tcl processes must be able to send each other scripts 
to execute.  These scripts would be executed 
asynchronously.  Sending these scripts is the primary 
mechanism that will be used to initiate computations 
in the application. 

• Tcl processes must be able to send each other Tcl 
data.  The receiving process must be able to establish 
a Tcl script to handle the receipt of data. 

• Applications must be able to determine the number of 
processes in the application and each process should 
be able to determine its rank within the application. 

• Compiled code must be able to take over the 
messaging completely.  Most Tcl MPI applications 
will actually be Tcl driven with compiled cores.  

Our mpitcl interpreter provides an mpi namespace which, in 
the current version defines an mpi command ensemble.  The 
subcommands of this ensemble are: 

• size -  returns the number of processes in the 
application. 

• rank – returns the rank of the process in the 
MPI_COMM_WORLD communicator. 

• execute rank script -  executes the script in the rank 
specified by rank two special values for rank  are all 
and others.   These execute the script in all processes 

(including the sender) and in all other processes 
respectively. 

• send rank data –  sends data to rank the special 
values all and others are supported with the same 
meaning as the execute subcommand. 

• handle script – invokes script the process receives 
data. script is invoked with two parameters, the 
sender’s rank and the data that was received. 

• stopnotifier – Only legal in rank 0 – stops the event 
loop message notification thread. 

• startnotifier – Only legal in rank 0 – starts the event  
loop message notification thread (starts by default). 

In mpitcl,  

Only rank 0 runs an interpreter main loop.   All other ranks 
will run a loop probing for messages and handling them.  
Tags are used to distinguish between message types.   In this 
implementation there is only support for the 
MPI_COMM_WORLD communicator and therefore no 
support for the creation of process groups. 

When rank 0 initializes, it starts a thread that probes for 
MPI messages. When a message is received, 
Tcl_ThreadQueueEvent is used to notify the interpreter’s 
event loop a message is available for processing.  The event 
handler reads and processes the MPI messages in exactly the 
same manner as non-rank 0 threads.   Once the main thread 
processes this event, the notification thread is restarted.  A 
special MPI tag tells the notification thread to stop without 
notifying the interpreter event loop.  

Thus we have a model where the interpreter in rank 0 is a 
master and all other ranks are slaves.  Initially rank 0 will 
send scripts and data to other ranks.  Those scripts may direct 
non rank 0 processes to communicate with each other in 
order to collaborate on the required computation. 

Note that the execute and send commands don’t use 
message passing when the target is the invoking process.  
Instead we just directly perform the operation.  EXAMPLE  1 



 

shows a minimal mpitcl script.  This application just exits 
after starting. 

The script shown in EXAMPLE  2 is a bit more complex.  It 
shows how mpitcl scripts gather data sent to them from other 
nodes.  This script demonstrates a pattern commonly used by 
the rank 0 process to get the contributions to the result of a 
computation. 

 
 Each process is told to execute a script that sends a sign on 
message back to rank 0.  The rank 0 then enters the event loop 
while there are still slaves that have not responded.  As data 
are received, the receiver proc is invoked from the event loop.  
It handles the data and terminates the vwait command.  The 
program then stops the notifier thread and tells al processes to 
exit. 

B. Massively parallel NSCLSpecTcl 
This section describes what was necessary to take the existing 
interactive NSCLSpecTcl application and port it to run under 
the mpitcl MPI aware tcl shell. 
 

Our first task was to create a batch version of 
NSCLSpecTcl.  We replaced the vertical boxes in Figure 10 
NSCL SpecTcl block diagram with an abstract data source and 
an abstract data sink.  We initially implemented a file data 
source and a data sink that contained the analysis pipeline and 
histogramming.  We added the following commands: 

• filesource  sets the data source to be the file data 
source connected to a specific data file. 

• analysissink specified the data sink to be the the 
analysis pipeline and histograming engine. 

• analyze – takes chunks of events from the data  
source passing them to the data sink until the data 
source is exhausted. 
 

This batch version of SpecTcl was turned into a Tcl loaded 
package called spectcl.  The user analysis pipeline invoked by 
the analysis sink was isolated into a shared library the user 
created from a skeleton and loaded as a Tcl package.   The 
pipeline elements do not require any code changes from 
interactive NSCLSpecTcl.  Note that the analysis 
configuration is a Tcl script that can be created with 
interactive SpecTcl. 
 
Batch then was made to run under mpitcl.  This was done by 
creating another package called mpispectcl. This package 
added the following commands: 

• mpisource  specifies the data source to be blocks of 
events received via MPI messages. 

• mpisink  specifies that the data sink was a distributor 
using MPI messaging to send data to processes on 
request from MPI data sources. 

 
In MPI Spectcl each rank has a complete copy of 
NSCLSpecTcl.  A run of MPI NSCLSpecTcl is involves the 
rank 0 process: 

1. Ensuring all required packages are loaded in the all 
ranks. 

2. Ensuring the analysis configuration script is loaded 
into all ranks. 

3. Configuring all non-rank 0 processes to use an mpi 
data source and an analysis data sink. 

4. Configuring rank 0 to use a file data source and an 
mpi data sink 

5. Analyzing the file. 
6. Collecting, summing and writing the histograms 

produced by all non-rank 0 processes.  These 
histogram files can then be visualized using 
interactive Spectcl. 
 

Example 3 shows how this is done with mpitcl: 

mpi::mpi stopnotifier 
mpi::mpi execute all exit 

Example 1A mimimal mpitcl script 

set slaves [mpi::mpi size] 
incr slaves -1;           # number of slave processes. 
 
 
proc receiver {rank data} { 
    puts "Received from $rank '$data'" 
    incr ::slaves -1 
} 
 
mpi::mpi handle receiver 
 
mpi::mpi execute others { 
    mpi::mpi send 0 "Rank [mpi::mpi rank] is alive" 
} 
 
while {$slaves} { 
    vwait slaves 
 
} 
 
mpi::mpi stopnotifier 
mpi::mpi execute all exit 

Example  2 Requesting and receiving data. 



 

 

The proc writeSpectra is not shown.  It uses the technique 
demonstrated in Example  2 to request all non-rank0 processes 
send the histograms they have computed.  Histogram 
contributions from each rank are summed and then written to 
file.   
 
NSCLSpecTcl’s MPI scaling is shown in Figure 12 NSCL 
SpecTcl  MPI scaling.  We reached I/O bandwidth limits after 
8 workers (9 processes).  The analysis was the same simplistic 
event unpacking software used in Figure 11: Threaded SpecTcl 
performance.  During E17011, the analysis pipeline will be 
considerably more complex. 

VI. CONCLUSIONS 
Modern data acquisition electronics have the potential to 

increase the data flow requirements of experiments in nuclear 
science.  Experiment E17011 is an example of this trend.   
 In order to meet the demands, of that, and other 
experiments, we have developed parallel libraries and 
programs that make it easy for people not experience in 
developing parallel software to make use of either threaded or 
cluster parallelism.  We will be applying these techniques to 
E17011 specifically and adapting them to even more complex 
experiments in the future. 
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mpi::mpi execute all { 
    package require spectcl 
    package require mpispectcl 
    package require MyPipeline 
    source defs.tcl 
} 
mpi::mpi execute others { 
    mpisource 
    analysissink 
} 
filesource run-0003-00.evt 
mpisink 
mpi::mpi stopnotifier 
mpi::mpi execute others analyze 
analyze 
 
mpi::mpi startnotifier 
 
writeSpectra 
 
mpi::mpi stopnotifier;          
mpi::mpi execute others exit 
exit 

Example  3 MPI SpecTcl anlayzing a data file. 
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