

Abstract— Advances in nuclear electronics can result in data

rates several orders of magnitude higher than those of traditional,
legacy electronic systems. Several technical developments are
therefore required for both online and offline data handling.
Included in those developments is a new Tcl MPI package and the
retrofitting of NSCLSpecTcl to use that package to perform
massively parallel histogramming.

I. INTRODUCTION

his paper will introduce the types of science done at the
National Superconducting Cyclotron Laboratory (NSCL).

Analog data acquisition electronics will be described and
contrasted with modern “digital” electronics. Modern
electronics support experiments that we are not able to
perform with legacy analog electronics. This capability comes
at a cost. Digital electronics can result in significantly higher
data rates than legacy analog electronics.

An upcoming experiment at the NSCL focused on decay
spectroscopy will be instrumented with modern digital
electronics and cannot be performed with traditional
electronics. This experiment is anticipated to take data at
continuous rates of up to 200MB/sec resulting in an aggregate
data set of over 100TB of data. The planned online and "near-
line" data flow of this experiment provides challenges
(pronounced opportunities) to explore methods of handling
data both online and "near-line". This experiment will be
described, as well as the data flow and the challenges it
presents.

Massively parallel computing will feature heavily in data for
digital electronics. We have written libraries and frameworks
to support parallel computation that can be easily switched
between threaded parallelism and massively parallel cluster
parallelism. We have also written an extended Tcl shell that
supports massively parallel Tcl driven applications.

II. THE NSCL AND THE SCIENCE WE DO
In this section we’ll describe rare isotope experimental

nuclear science performed at the NSCL.

This work is supported by the National Science Foundation grant
PHY-1565546

A. Nuclear Science with Rare Isotope Beams at NSCL
The bulk of experimental nuclear science is done by colliding
an accelerated beam of ions onto a target or, in the case of
colliders, accelerated ions moving the opposite direction. For
much of the history of experimental nuclear science, the
accelerated particles have been stable isotopes that are common
in nature.

Two techniques accelerate isotopes that are not stable;
projectile fragmentation [MOR98], and isotope separation
online (ISOL)[LIN04]. In projectile fragmentation, a stable
beam strikes a production target conservation of momentum
implies that the resulting reaction products will continue in the
beam direction with most of the stable beam momentum. A
reaction product separator then selects the desired isotope
which is transported to the experiment. With ISOL, the reaction
products from the production target are stopped in a thick target,
chemically extracted and then re-accelerated. The NSCL
produces its rare isotope beams via projectile fragmentation.

Rare isotope beams provide for several areas of scientific study
that are not possible with stable beams. These include
explorations of nuclear structure and shape far from stability.
Furthermore, many of the isotopes we experiment with are
believed to exist in the dense matter of supernova formed from
stellar core collapse as well is in the crusts of neutron stars.
These environments are where astrophysicists believe that
elements heavier than iron are formed.

B. The NSCL
The NSCL is a running experimental facility on the campus of

Modern Dataflow in Experimental Nuclear
Science and Tcl

Ron Fox, Giordano Cerizza, Sean Liddick, Aaron Chester
National Superconducting Cyclotron Laboratory

Michigan State University

T

Michigan State University. A schematic of the facility is shown
in Figure 1. Funding for the operation of the NSCL is provided
by the National Science Foundation.

The coupled cyclotrons at the left of Figure 1 produce stable
primary beams of elements ranging from Oxygen to Uranium
at energies from 80MeV/A to 170MeV/A. The ions from these
stable beams strike a production target, typically Be, near the
entrance of the A1900 fragment separator[Mor03]. The A1900
selects the desired rare isotope which is then transported to one
of several expermiental areas shown to the right of the A1900
in Fig. 1.

Figure 2 shows a chart of the nuclides with the stable primary
beams that have been produced and used at the NSCL. The
black squares on that diagram represent stable isotope beams.
The gray squares represent unstable beams of rare isotopes.
Over 900 rare isotope beams have been used in experiments
while a total of about 1000 have been produced or observed. Of
these beams 47 have been stopped and used either in stopped
beam experiments or reaccelerated low energy experiments.

III. DATA ACQUISITION THEN AND NOW
This section will examine how data taking has evolved in

nuclear science. We start by describing how data taking has
been historically done. We then describe advances in
electronics that we believe will push our data rates to as much
as two orders of magnitude faster than they are at the NSCL.

The products of nuclear collisions are not directly

observable. Instead we rely on the interaction of those products
with bulk matter. For example, charged particles passing
through detectors leave behind an ionization trail due to the
electrons they knock out of atoms in the detector material. An
electric field can then be used to cause those electrons to drift
and be collected. The result of this collection is an electric
pulse.
 These pulses are quite weak and fast, perhaps on the order of
nanoseconds (10-9 seconds) wide. In traditional “analog”
systems, these pulses are amplified and shaped into pulses a few
volts high and perhaps a microseconds across. In a parallel
electronics path, discriminators are used to convert the analog
pulses into logic pulses that are suitable as inputs to trigger logic
and, with proper timing, as gates to peak sensing or charge
integrating ADCs. Each of those ADCs produces one value per
pulse and then, only if the pulse lies within the ADC gate. The
electronics required to condition raw detector signals and time
gates appropriately can be quite complex.

Figure 1 Facility layout for the National Superconducting Cyclotron Laboratory along with many of the available experimental devices. Colors
indicate the energy of the rare isotope delivered to experimental systems in those areas.

Figure 2 Chart of the nuclides showing beams produced at the
NSCL to date.

The advent of fast, high resolution flash ADCs (100+ MHz
at 14 bits wide) and large FPGAs has made it possible to discard
most of the analog electronics described above, replacing it
with flash ADCs and logic and digital signal processing
implemented in FPGAs. This results in a simplified signal
chain for one channel that looks like Figure 3

In this design, the FADC is continuously digitizing. When

the FPGA determines a trigger condition has occurred, it can
look back in time at the samples recorded to ensure the full
signal pulse is captured. This ability to look back in time at a
digitized waveform eliminates most, if not all signal timing
delays. The FPGA can then perform the peak sensing and peak
integration operations performed by early analog digitizers. If
needed, the full signal trace is also available for further
processing. These electronics chains are called digital
electronics by experimental nuclear scientists because the
FADC and FPGA replace what used to be complex chains of
analog electronics.

It is the ability, and sometimes need, to capture signal traces
that inflates the bandwidth and storage requirements of modern
nuclear science experiments. Instead of providing one or two
values for each event or each channel, each channel may
provide 100 or more trace samples depending on the length of
the capture interval and the frequency of the FADC. The ability
to capture traces allows us to perform experiments that are not
possible otherwise.

 While a typical NSCL experiment lasts one week and
captures between 10GB and 10TB of data, we anticipate that
experiments with digital electronics that same week will
capture between 1TB and 1PB of raw data. Furthermore,
during an experiment it’s important to process this data online
and near-line (near-line processing refers to the analysis of data
that was taken in an early stage of the experiment while the
experiment is still running). This processing is used, not only
to ensure the experimental systems are working but also to
enable mid-run decision making.

IV. E17011 – LIFETIME MEASUREMENTS IN NEUTRON RICH
NUCLEI

E17011[Cri] is an experiment scheduled to run at the NSCL

in early 2020. We’ll first examine the science goals of this

experiment and look at the experimental apparatus. We’ll then
examine the full online and near-line data processing chain and
its performance requirements. Online processing refers to
analysis done on the data as it passes through the data
acquisition system. Near-line data processing refers to analysis
done during the experiment on data files already acquired.
Finally we will describe some of the methods we will use to
meet the performance requirements of those demands. This
part will segue into the next part which describes in detail
mpitcl, which provides support for massively parallel
computing for Tcl based applications.

A. Experimental aims and setup
Understanding the interplay between single-particle and

collective effects is a continuing thrust in nuclear science to
address questions articulated in the recent long range plan
regarding the organization of subatomic matter and the
emergence of simple patterns in complex nuclei. The relative
energies between different single-particle orbits is a continuing
question and the size of the energy gap located at a neutron
number of N = 50 shell gap is of interest for its role in the r-
process [Bar08] and nuclear existence [Erl12]. The energy gap
can be probed by identifying nuclear states corresponding to the
normal filling of single-particle levels and those that involved
an excitation of neutrons across the N = 50 energy gap. The
coexistence of such states at similar excitation energies has
been observed in the 80Ge nucleus [Got16]. The two types of
states to be studies both have a spin and parity of 0+ and can be
populated through the beta decay of a neutron-rich 80Ga
nucleus. The beta-decay process will turn a neutron in 80Ga
into a proton and convert it to 80Ge while populating a range of
excited nuclear states that will subsequently decay emitting
photons or, potentially, electrons.

Rare isotope research facilities such as the NSCL can create
these neutron rich nuclei and allow researchers to perform
experiments with them.

E17011 examines the properties of 80Ge, a neutron rich
isotope of Germanium. A beam of 80Ga(neutron-rich
Gallium) will be brought to rest in a monolithic CeBr3 (Cerium
Bromide) scintillator detector read out with a 16 by 16 pixelated
photomultiplier detector.

The β- emitted by the decay of 80Ga will result in a pulse in
the CeBr3 and occasionally the beta-decay process will
populated the excited 0+

2 state. When the 02
+ state de-excites it

will emit a second electron that will result in a pulse slightly
delayed in time with respect to the beta-decay electron (see
Figure). Measuring the time between these two pulses gives an
exponential distribution from which the lifetime of the 02

+ state
can be extracted as has been done previously [Cri16, Suc14].
This lifetime provides information about difference in the mean
square charge radius between these two states in 80Ge.

Theory predicts that this lifetime is about 50ns. Since
traditional analog digitizers have dead-times of microseconds,
they cannot easily be used to perform this measurement. What
we can do, however, is capture signal traces from the CeBr3

Figure 3Modern digital electronics chain

detector using modern digitizers of the sort shown in Figure 3.

 The originally proposed experimental setup is shown
schematically in Figure 5. The beam goes from left to right in
this figure. The CeBr3 detector is at the center of 16 detectors
of the Segmented Germanium (SeGa) array [Mue01] shown as
the blue cylinders. SeGA, and an array of 16 LaBr3 [Lon19]
detectors are used to directly measure the gamma-ray transition
energies.

 Upstream of SeGA a stack of PIN diode detectors that do
particle-by-particle identification of the beam particles being
deposited in the CeBr3 detector based on energy loss and time-
of-flight measurements. This particle identification allows us
to know exactly what is being implanted into the CsBr3
detector since the beam delivered to the final setup will
contain a range of isotopic species

B. The online and near-line analysis chains.

In order to understand the data from the experiment
sufficiently to know if the experiment is working properly we
need to perform the following analysis in a combination of
online and near-line processes.

• Hits from the digitizers must be combined in time
coincidence into events varying in size depending on
experimental need between a few hundred
nanoseconds and a few microseconds. This process

is known as event building. Note that the digitizers
we use emit data we call hits that is timestamped but
these hits are not guaranteed to be time ordered

• The data flow can be reduced by requiring that PIN
detector hits have a minimum threshold energy
indicating the particle was a heavy ion. This process
is known as software triggering. We do not know in
advance the fraction of data software triggering will
retain.

• The traces from the CeBr3 detectors must be analyzed
to determine if they are single or double pulses (the
bulk will be single pulses). For the double pulses, the
time between pulses and the heights of both pulses
must be determined.

• Implantation events must be correlated with the
corresponding decays.

• Live data must be recorded to disk for near-line and
offline analysis. The files recorded contain time
sequenced data for each event allowing a complete
reconstruction of the experiment in offline analysis.

Figure 6 Shows our proposed online data flow. While the

trigger rates are expected to be a relatively modest 3 KHz, the
data flow is expected to be about 200MB/sec. This is due to
traces we will take and the high expected channel multiplicities.
Note that the NSCLDAQ data flow scheme allows us to treat
each of the data flow arrows in Figure 6 as a test point with no
impact on data flow. Note that the pulses shown in Figure 4 can
overlap heavily.

C. Meeting rate requirements
The first bottleneck in Figure 6 is the process labeled

(“Append fits for 1, 2 pulses to the sum signal”). In addition to
signals for each pixel, digitized at 250MHz, the detector
provides a signal summing the energies in all pixels which we
will digitize at 500MHz. Online, our goal is only to fit the
energy sum signal. The pixel signals will be fitted in near-line
analysis.

Fitting the traces is used both to extract the key features of
those pulses (time and peak height) as well as to provide
determine if the traces contain a single or double pulse. The
following empirical functional forms are used to fit the pulses:

𝑦𝑦 = 𝐶𝐶 + 𝐴𝐴𝐴𝐴−𝑘𝑘1(𝑥𝑥−𝑥𝑥0)

1+ 𝐴𝐴−𝑘𝑘2(𝑧𝑧−𝑥𝑥0)
 (2)

Figure 4 Detector trace from a similar experiment showing the
beta-decay electron between 68Co populating the excited 02+

state in 68Ni which decays a short time later through the
emission of an internal conversion electron or internal pair
formation [Cri16].

Figure 5 E17011 experimental setup

Figure 6: Data flow for E17011

𝑦𝑦 = 𝐶𝐶 + 𝐴𝐴1𝐴𝐴
−𝑘𝑘1(𝑥𝑥−𝑥𝑥0)

1+ 𝐴𝐴−𝑘𝑘2(𝑧𝑧−𝑥𝑥0) + 𝐴𝐴2𝐴𝐴
−𝑘𝑘3(𝑥𝑥−𝑥𝑥1)

1+ 𝐴𝐴−𝑘𝑘4(𝑥𝑥−𝑥𝑥1)

The first of these functions represents a single pulse and the
second a double pulse. The trace has a DC offset C. For each
pulse, the denominator is a logistic function that is used to
model the rising edge of the pulse, the numerator contains a
scale factor related to the pulse height and an exponential decay
that models the falling edge of the pulse. The values of
importance are A, A1, A2, x0 and x1. For a single pulse the
actual pulse amplitude is gotten by evaluating the pulse formula
at:

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥0 + ln �𝑘𝑘2

𝑘𝑘1
� /𝑘𝑘2 (3)

Fitting the sum trace requires in excess of 3ms/trace using the
Levenberg-Marquardt[Lev] fit routines in the GNU Scientific
Library. The ratios of the chi square errors of the fit between
the single and double pulse provide a heuristic for determining
if the pulses are double or single.

The next bottleneck is our ability to extract parameters and
implantation/decay correlations from the data so that
histograms can be generated and visualized. The actual
histogram operations are not a bottleneck. It is clear that to
achieve our online analysis goals we’ll need to make use of
parallel processing.

1) Parallel libraries and programs – classifying and fitting

In order to meet the performance requirements of online
analysis while allowing us to re-use code for near-line analysis,
we have written libraries to support parallel processing and
framework programs that hide the nature of parallel processing
from the user. While these are targeted at E17011 they are, in
fact quite general.

The libraries themselves abstract communication into
communication patterns (e.g. fanout, fanin, and pipeline) and
separate these patterns from the underlying transport. At
present we support 0MQ[Zmq] and the Message Passing
Interface[Mpi] (MPI) as transports. 0MQ and its high
performance inproc transport targets threaded parallelism while
MPI targets process parallelism on massively parallel cluster
computing. Note that nothing in our libraries precludes the use
of 0MQ in distributed parallel computing.

Online analysis will use threaded parallelism, while near-line
and offline will use MPI parallelism. The libraries allow single
programs to be written that can select their parallelization
strategy (threaded/0MQ or cluster/MPI) at run-time. We have
written several programs that provide the capability to plug-in
user, application specific code that is unaware of the parallel
nature of the underlying program. These programs can be told
on the command line whether or not to use threaded or MPI
parallelism. These framework programs accept user code built
into a shared object library which is loaded at run-time.

 Two programs we use in the online data flow are:
• A classifier: User code assigns a uint32_t value for

each event. This is the first stage of event selection.
The second stage is a generic selection of events
whose classifications meet specific criteria.
Classification can be arbitrarily complex while
selection is usually quite simple.

• An event editor. User code is given an event fragment
and generates a replacement for that fragment. This is
used online to append fits information to hits and
offline to strip traces from event fragments that have
already been fit.

Since for all of our programs, events can be processed
independently, the framework programs all have the same
general structure shown in Figure 7

 The programs are parallel pipelines with data flowing from
left to right. The data distributor, fans out blocks of events to
workers that operate on them in parallel. The workers fan in
blocks of modified events to a thread/process that re-sorts the
data by timestamp and then passes them on to a thread/process
that outputs them.

• In most cases each event can be operated on
independently of all other events allowing the workers
to be embarrassingly parallel.

• In order to efficiently balance messaging and
processing, the programs have a command option to
let the user select the number of events in each block
of events sent to workers.

• A pull protocol is used by the workers to get data from
the distributor.

• To allow the correlation of implantations with
corresponding decays, we re-sort the data back into its
original order before outputting it.

Figure 7: Structure of event parallel programs.

We used the event editor with user code that fits the energy
sum signal to check the online performance of the fitting part of
the dataflow. The program was run on a system with 40 cores
of Xeon 6148 clocked at 2.4Ghz. This is a system we intend to
use for the experiment. Figure 8 shows the event processing
rate as a function of the number of worker threads:

This figure shows that:
• We meet the online rate requirements using between

4 and 6 worker threads.
• There is a knee when we hit the number of actual

processor cores. Additional performance gains due to
hyper threading don’t add nearly as much as
additional cores do.

Near-line, we’d like to fit all 256 pixels at least at the incoming
data rate. Due to the monolithic nature of the central CeBr3
detector, most pixels are expected to trigger for each event.
This will require about 2500 cores. The event editing program
fitting can run either threaded parallel or MPI parallel on a
massively parallel cluster. The NSCL has a modest cluster of
around 200 cores called Fireside.
 Michigan State University, has a unit called the Institute for
Cyber Enabled Research[Icer] (ICER). Among other things,
ICER provides a cluster of over 23,000 cores available for use
by MSU researchers. We hope to make use of this facility for
near-line analysis during the run.

Figure 9 shows the performance of the same fit program
using cluster parallel computing both on Fireside and at ICER.

 Several points to note:

• The ICER cores are faster than the NSCL cores.
• Both plots have performance knees. This is because

the cluster nodes are heterogeneous. As the number of
cores required increases we get relegated to the more
plentiful, older cores.

Our performance measurements at ICER duplicated the NSCL
software environment using Singularity[Sylabs] containers.
Singularity is MPI aware. Unfortunately the version of
singularity available at ICER has a bug that makes running MPI

applications with more than 64 processes unreliable. ICER is
in the process of updating their singularity runtime to allow us
to extend our scaling measurements.

2) Parallel online histograming – NSCLSpecTcl.

At NSCL, our primary histograming and visualization tool
for online data analysis is NSCLSpecTcl[Fox04]. This is a Tcl
driven program. The experimenter supplies a logical pipeline
of code that accepts raw events as input and produces
parameters, both raw and synthetic as output. A generic
histograming kernel increments histograms. NSCLSpecTcl
specific commands allow users to dynamically create
histograms, create conditions and apply arbitrary logical
combinations of those conditions to control which events cause
histograms to be incremented. Tk allows users to create
sophisticated application specific GUIs.

The structure of NSCLSpecTcl is shown in Figure 10.

 Geordano Cerizza has forked the NSCLSpecTcl codebase and
created a threaded version of NSCLSpecTcl that completely
retains its interactive nature. His work allocates one thread to

0
2000
4000
6000
8000

10000
12000
14000

0 50 100

EV
en

ts
/s

ec

Workers

Events/sec vs workers

Figure 8: Threaded fit performance

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

Ev
en

ts
/s

ec

Workers

MPI Fit performance Fireside
(NSCL)
ICER

Figure 9MPI fit performance

Figure 10 NSCL SpecTcl block diagram

the data source and buffer decoding. User event then become a
set of parallel workers. Each worker gets a block of events and,
when parameters for that block of events have been extracted,
the resulting lists of event parameters are sent to the main thread
via Tcl_ThreadQueueEvent.
 One problem with this and other event parallel schemes is
that for these implantation/decay experiments, events are not
completely independent of each other. At some point in the
analysis, implantation events must be correlated with their
associated decays. In this and other fully event parallel
programs, implantations may have their decays in different
blocks of events, processed by other workers.
 For E17011, where the 80Ga half-life is a bit less than 1.7
seconds, we can make the blocks of data sufficiently large (an
800Mbyte data block represents about 4 seconds of data) to
allow a sufficient number of implantation and decay
correlations to be made to understand the experiment online and
near-line.
 Figure 11 shows the performance of threaded SpecTcl on a
simple analysis. This analysis just unpacks the raw parameters
from the fragments of each built event. Note that the actual
online analysis will be quite a bit more complex.

The roll-off after about 16 processors at about 3.5-3Gbytes/Sec
represents data transfer limits from the local SSD on which the
event data were stored.

V. MPITCL AND MASSIVELY PARALLEL TCL PROGRAMMING

This section introduces an MPI aware Tcl interpreter. The
Message Passing Interface (MPI) is introduced. We’ll describe
existing work to make MPI accessible to Tcl. We’ll then
describe the features of mpitcl and provide simple examples of
mpitcl scripts. Finally we’ll present a real application of mpitcl
to an existing program, NSCLSpecTcl allowing it to run in a
cluster parallel environment. MPI consists of a specification
and language bindings that make the functions and data types
described by that specification available to specific
programming languages.

A. Message Passing Interface
The message passing interface, or MPI is a distributed

parallel programming system. MPI programs run the same
process in parallel on multiple nodes or cores within those
nodes. MPI is supported on virtually all massively parallel
cluster computing environments. OpenMPI and MPICH are the
two common implementations of the MPI specification. Both
are open source implementations of the MPI standard. Our tests
all use the OpenMPI libraries.
 In MPI processes exchange messages using an opaque
structure called a “communicator” When the MPI program is
run a single communicator: MPI_COMM_WORLD is defined.
Subsequently the program can define additional communicators
and use these communicators to create process groups that
communicate internally.
 Within a communicator a process has a rank. A process’s
rank is just an integer number that runs from 0 to n-1 where n
is the number of processes in that communicator.
 Sending a message requires:

• A communicator.
• The rank of the receiving process within the

communicator.
• A message tag that can be used to identify the type of

message being sent.
• A buffer.
• A data type indicating the type of data in the block
• The number of data items in the block.

When receiving messages, processes can either specify exactly
the tag and rank from which to receive a message, allowing
for complex application protocols, or provide wild cards for
either the tag or the rank (note that even with a wild card
source rank messages receipt will be restricted to those
processes within the communicator specified in the receive
call.

MPI defines primitive data types and allows users to define
their own data types.

1) Existing MPI Tcl packages.

The MPI Specification is large, rich and complex. Version 3
of the specification defines approximately 600 API functions.
The size and complexity of MPI that requires some choices
when exposing the MPI to Tcl applications.

Axel Kohlmeyer created a Tcl MPI package[Kohl]. He
decided to encapsulate a subset of the MPI specification. His
work is somewhat SWIG providing Tcl verbs that represent
bindings to raw MPI calls.

Kohlmeyer’s tclmpi package provides Tcl bindings to 21
MPI API functions. Tclmpi also provides a tclmpi namespace
with values for the predefined communicators as well as MPI
data types and a Tcl specific data type.

While the subset of MPI implemented by tclmpi reduces
somewhat the complexity of of the MPI specification, raw MPI
is still exposed to script writers.

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50

Pr
oc

es
sin

g
Sp

ee
d

(M
b/

s)

Number of Processors

Figure 11Threaded SpecTcl performance

2) mpitcl – NSCL style.

In designing the specification for mpitcl, an MPI aware shell,
we wanted to hide MPI as much as possible from the script
author. We thought a bit about what Tcl-ish MPI
encapsulation might allow script to do.
 We came up with the following requirements:

• Tcl processes must be able to send each other scripts
to execute. These scripts would be executed
asynchronously. Sending these scripts is the primary
mechanism that will be used to initiate computations
in the application.

• Tcl processes must be able to send each other Tcl
data. The receiving process must be able to establish
a Tcl script to handle the receipt of data.

• Applications must be able to determine the number of
processes in the application and each process should
be able to determine its rank within the application.

• Compiled code must be able to take over the
messaging completely. Most Tcl MPI applications
will actually be Tcl driven with compiled cores.

Our mpitcl interpreter provides an mpi namespace which, in
the current version defines an mpi command ensemble. The
subcommands of this ensemble are:

• size - returns the number of processes in the
application.

• rank – returns the rank of the process in the
MPI_COMM_WORLD communicator.

• execute rank script - executes the script in the rank
specified by rank two special values for rank are all
and others. These execute the script in all processes

(including the sender) and in all other processes
respectively.

• send rank data – sends data to rank the special
values all and others are supported with the same
meaning as the execute subcommand.

• handle script – invokes script the process receives
data. script is invoked with two parameters, the
sender’s rank and the data that was received.

• stopnotifier – Only legal in rank 0 – stops the event
loop message notification thread.

• startnotifier – Only legal in rank 0 – starts the event
loop message notification thread (starts by default).

In mpitcl,

Only rank 0 runs an interpreter main loop. All other ranks
will run a loop probing for messages and handling them.
Tags are used to distinguish between message types. In this
implementation there is only support for the
MPI_COMM_WORLD communicator and therefore no
support for the creation of process groups.

When rank 0 initializes, it starts a thread that probes for
MPI messages. When a message is received,
Tcl_ThreadQueueEvent is used to notify the interpreter’s
event loop a message is available for processing. The event
handler reads and processes the MPI messages in exactly the
same manner as non-rank 0 threads. Once the main thread
processes this event, the notification thread is restarted. A
special MPI tag tells the notification thread to stop without
notifying the interpreter event loop.

Thus we have a model where the interpreter in rank 0 is a
master and all other ranks are slaves. Initially rank 0 will
send scripts and data to other ranks. Those scripts may direct
non rank 0 processes to communicate with each other in
order to collaborate on the required computation.

Note that the execute and send commands don’t use
message passing when the target is the invoking process.
Instead we just directly perform the operation. EXAMPLE 1

shows a minimal mpitcl script. This application just exits
after starting.

The script shown in EXAMPLE 2 is a bit more complex. It
shows how mpitcl scripts gather data sent to them from other
nodes. This script demonstrates a pattern commonly used by
the rank 0 process to get the contributions to the result of a
computation.

 Each process is told to execute a script that sends a sign on
message back to rank 0. The rank 0 then enters the event loop
while there are still slaves that have not responded. As data
are received, the receiver proc is invoked from the event loop.
It handles the data and terminates the vwait command. The
program then stops the notifier thread and tells al processes to
exit.

B. Massively parallel NSCLSpecTcl
This section describes what was necessary to take the existing
interactive NSCLSpecTcl application and port it to run under
the mpitcl MPI aware tcl shell.

Our first task was to create a batch version of
NSCLSpecTcl. We replaced the vertical boxes in Figure 10
NSCL SpecTcl block diagram with an abstract data source and
an abstract data sink. We initially implemented a file data
source and a data sink that contained the analysis pipeline and
histogramming. We added the following commands:

• filesource sets the data source to be the file data
source connected to a specific data file.

• analysissink specified the data sink to be the the
analysis pipeline and histograming engine.

• analyze – takes chunks of events from the data
source passing them to the data sink until the data
source is exhausted.

This batch version of SpecTcl was turned into a Tcl loaded
package called spectcl. The user analysis pipeline invoked by
the analysis sink was isolated into a shared library the user
created from a skeleton and loaded as a Tcl package. The
pipeline elements do not require any code changes from
interactive NSCLSpecTcl. Note that the analysis
configuration is a Tcl script that can be created with
interactive SpecTcl.

Batch then was made to run under mpitcl. This was done by
creating another package called mpispectcl. This package
added the following commands:

• mpisource specifies the data source to be blocks of
events received via MPI messages.

• mpisink specifies that the data sink was a distributor
using MPI messaging to send data to processes on
request from MPI data sources.

In MPI Spectcl each rank has a complete copy of
NSCLSpecTcl. A run of MPI NSCLSpecTcl is involves the
rank 0 process:

1. Ensuring all required packages are loaded in the all
ranks.

2. Ensuring the analysis configuration script is loaded
into all ranks.

3. Configuring all non-rank 0 processes to use an mpi
data source and an analysis data sink.

4. Configuring rank 0 to use a file data source and an
mpi data sink

5. Analyzing the file.
6. Collecting, summing and writing the histograms

produced by all non-rank 0 processes. These
histogram files can then be visualized using
interactive Spectcl.

Example 3 shows how this is done with mpitcl:

mpi::mpi stopnotifier
mpi::mpi execute all exit

Example 1A mimimal mpitcl script

set slaves [mpi::mpi size]
incr slaves -1; # number of slave processes.

proc receiver {rank data} {
 puts "Received from $rank '$data'"
 incr ::slaves -1
}

mpi::mpi handle receiver

mpi::mpi execute others {
 mpi::mpi send 0 "Rank [mpi::mpi rank] is alive"
}

while {$slaves} {
 vwait slaves

}

mpi::mpi stopnotifier
mpi::mpi execute all exit

Example 2 Requesting and receiving data.

The proc writeSpectra is not shown. It uses the technique
demonstrated in Example 2 to request all non-rank0 processes
send the histograms they have computed. Histogram
contributions from each rank are summed and then written to
file.

NSCLSpecTcl’s MPI scaling is shown in Figure 12 NSCL
SpecTcl MPI scaling. We reached I/O bandwidth limits after
8 workers (9 processes). The analysis was the same simplistic
event unpacking software used in Figure 11: Threaded SpecTcl
performance. During E17011, the analysis pipeline will be
considerably more complex.

VI. CONCLUSIONS
Modern data acquisition electronics have the potential to

increase the data flow requirements of experiments in nuclear
science. Experiment E17011 is an example of this trend.
 In order to meet the demands, of that, and other
experiments, we have developed parallel libraries and
programs that make it easy for people not experience in
developing parallel software to make use of either threaded or
cluster parallelism. We will be applying these techniques to
E17011 specifically and adapting them to even more complex
experiments in the future.

REFERENCES

[MOR98] Radioactive Nuclear Beam Facilities Based on
Projectile Fragmentation, D.J. Morrissey and B.M. Sherrill,
Proc. Royal Soc. A 356 (1998) 1985
[LIN04] Review of ISOL-Type Radioactive Beam Facilities M.
Lindroos Proceedings of EPAC 2004 online at
https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUXCH
01.PDF
[Cri] Experimental proposal for E17011, B. Crider et al.
unpublished.
[Lev] A Method for the Solution of Certain Non-Linear
Problems in Least Squares K. Levenberg Quarterly of Applied
Mathematics 2(2) 164-168
[Zmq] http://zeromq.org
[Mpi] https://www.mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf
[Icer] https://icer.msu.edu/
[Sylabs] https://sylabs.io/singularity/
[Fox04] NSCLSpecTcl Meeting the needs of Preliminary
Nuclear Physics Data Analysis R. Fox et al. Tcl 2004 New
Orleans available online at
https://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf

[Kohl] https://sites.google.com/site/akohlmey/software/tclmpi

[Cri16] B.P. Crider, et al., Phys. Lett. B 763, 108-113 (2016).
[Suc14] S. Suchyta et al.,Phys Rev C 89, 067303 (2014).
[Mue01] W. F. Mueller, et al., Nucl. Instrum. Methods Phys.
Res. A 466, 492 (2001).
[Mor03] D. J. Morrissey, B. M. Sherrill, M. Steiner, A. Stolz,
and I.Wiedenhoever, Nucl. Instrum. Methods Phys. Res. B 204,
90 (2003).
[Bar08] S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008).
[Got16] A. Gottardo et al., Phys. Rev. Lett. 116, 182501 (2016).

mpi::mpi execute all {
 package require spectcl
 package require mpispectcl
 package require MyPipeline
 source defs.tcl
}
mpi::mpi execute others {
 mpisource
 analysissink
}
filesource run-0003-00.evt
mpisink
mpi::mpi stopnotifier
mpi::mpi execute others analyze
analyze

mpi::mpi startnotifier

writeSpectra

mpi::mpi stopnotifier;
mpi::mpi execute others exit
exit

Example 3 MPI SpecTcl anlayzing a data file.

0

200000

400000

600000

800000

0 2 4 6 8 10

Ev
en

ts
/s

ec

workers

Events/sec

Figure 12: NSCL SpecTcl MPI scaling

https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUXCH01.PDF
https://accelconf.web.cern.ch/accelconf/e04/PAPERS/TUXCH01.PDF
http://zeromq.org/
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://icer.msu.edu/
https://sylabs.io/singularity/
https://www.tcl.tk/community/tcl2004/Papers/RonFox/fox.pdf
https://sites.google.com/site/akohlmey/software/tclmpi

	I. INTRODUCTION
	II. The NSCL and the Science we do
	A. Nuclear Science with Rare Isotope Beams at NSCL
	B. The NSCL

	III. Data Acquisition Then and now
	IV. E17011 – Lifetime measurements in Neutron Rich Nuclei
	A. Experimental aims and setup
	B. The online and near-line analysis chains.
	C. Meeting rate requirements
	1) Parallel libraries and programs – classifying and fitting
	2) Parallel online histograming – NSCLSpecTcl.

	V. mpitcl and massively parallel Tcl programming
	A. Message Passing Interface
	1) Existing MPI Tcl packages.
	2) mpitcl – NSCL style.

	 Tcl processes must be able to send each other scripts to execute. These scripts would be executed asynchronously. Sending these scripts is the primary mechanism that will be used to initiate computations in the application.
	 Tcl processes must be able to send each other Tcl data. The receiving process must be able to establish a Tcl script to handle the receipt of data.
	 Applications must be able to determine the number of processes in the application and each process should be able to determine its rank within the application.
	 Compiled code must be able to take over the messaging completely. Most Tcl MPI applications will actually be Tcl driven with compiled cores.
	Our mpitcl interpreter provides an mpi namespace which, in the current version defines an mpi command ensemble. The subcommands of this ensemble are:
	 size - returns the number of processes in the application.
	 rank – returns the rank of the process in the MPI_COMM_WORLD communicator.
	 execute rank script - executes the script in the rank specified by rank two special values for rank are all and others. These execute the script in all processes (including the sender) and in all other processes respectively.
	 send rank data – sends data to rank the special values all and others are supported with the same meaning as the execute subcommand.
	 handle script – invokes script the process receives data. script is invoked with two parameters, the sender’s rank and the data that was received.
	 stopnotifier – Only legal in rank 0 – stops the event loop message notification thread.
	 startnotifier – Only legal in rank 0 – starts the event loop message notification thread (starts by default).
	In mpitcl,
	Only rank 0 runs an interpreter main loop. All other ranks will run a loop probing for messages and handling them. Tags are used to distinguish between message types. In this implementation there is only support for the MPI_COMM_WORLD communicato...
	When rank 0 initializes, it starts a thread that probes for MPI messages. When a message is received, Tcl_ThreadQueueEvent is used to notify the interpreter’s event loop a message is available for processing. The event handler reads and processes the...
	Thus we have a model where the interpreter in rank 0 is a master and all other ranks are slaves. Initially rank 0 will send scripts and data to other ranks. Those scripts may direct non rank 0 processes to communicate with each other in order to col...
	Note that the execute and send commands don’t use message passing when the target is the invoking process. Instead we just directly perform the operation. Example 1 shows a minimal mpitcl script. This application just exits after starting.
	The script shown in Example 2 is a bit more complex. It shows how mpitcl scripts gather data sent to them from other nodes. This script demonstrates a pattern commonly used by the rank 0 process to get the contributions to the result of a computation.
	B. Massively parallel NSCLSpecTcl

	VI. Conclusions
	References

