
The State of TclQuadcode 2017
Kevin B. Kenny

Donal K. Fellows
The 'tclquadcode' system is a compiler, now under development for about three years, that translates a significant subset of
Tcl to machine code. For the limited cases that it can handle, 'tclquadcode' produces significant gains with respect to the

bytecode engine: 4-6-fold speedup in the typical case, and 30-100-fold speedup in the most advantageous cases. This talk

presents recent work on speeding up the interface between compiled and interpreted code, avoiding memory allocation, and
supporting non-local variable references. The speakers also intend to poll the audience informally on several topics where
quadcode may drive developments in core Tcl.

1. Review: what is
tclquadcode?
The ‘tclquadcode’ compiler is a native-code compiler for

Tcl. That is, its output is executable machine code, not
code for an abstract machine that is then processed by an

interpreter. It is an ahead-of-time compiler, that is, it runs
in advance of execution rather than generating code when

a procedure is first executed. (At the current stage of de-
velopment, it is too slow for just-in-time compilation.) It

handles a limited subset of the language; for instance, at
the moment it compiles procedures only (no TclOO meth-

ods, no λ terms, no global scripts). Nevertheless, the
aspiration is that all language features will either be

compilable or fall back on interpreted code. Similarly, the
developers’ intent is that compiling code for performance

should not depend on the user helping the compiler in
ways like requiring variable type declarations. As far as

possible, the compiler should deduce where it can generate
efficient machine code while still preserving the

‘everything is a string’ convenience that Tcl programmers
know and love.

The project is, at present, about forty-five thousand lines
of Tcl code, augmented with just under 3000 lines of C++

code (plus about ten thousand lines of generated code), all
of which layers atop the LLVM compiler infrastructure

[LATT04]. It is, and will remain for some time, very much
a work in progress. Nevertheless, the authors belive that at

this point, significant programs can be ported over to it and
gain the benefits of C-like execution speed while still

retaining a Tcl flavour.

2. History of the project
Tcl’s performance has been known to be a problem for

quite a few years, and the bytecode interpreter (which rep-
resented order-of-magnitude improvements over direct in-

terpretation) was the headline feature of Tcl 8.0 in 1998.
Bytecoding has improved much in recent years, but we are

now clearly at a performance wall. The bytecode engine is
a delicate piece of code, where any change tends to make

programs go slower. It’s horrible to maintain (the code is a
maze of GOTO statements), and it’s close to the achiev-

able limit. Conceivably, a new interpreter (and perhaps a
new bytecode language) could double or triple the speed,

but the further order of magnitude that we would like to
see really requires compilation down to machine code.

A number of events combined in the autumn of 2013 to
trigger the start of the ‘tclquadcode’ project. A Google

Summer of Code project had produced a Tcl bytecode as-
sembler [UGUR10], which not only demonstrated that it

was possible to work with bytecode at a high level, but
more importantly, showed that it was possible to analyze

bytecode and ensure execution safety. The assembler does
not yield code that crashes the interpreter; all errors are re-

ported as Tcl errors. Nevertheless, hand tuning can get
30-40% speed improvements relative to the code that the

Tcl front end generates. At the same time, several
developers had been experimenting with adding Tcl front

ends to such embeddable compilers as tcc [TCC17] and
llvm [DECO17]. It was therefore possible both to analyze

bytecode, and to produce code for a compiler backend,
without needing to leave the Tcl programming

environment or hack the Tcl code. Finally, Karl
Lehenbauer of FlightAware had in 2012 proposed a series

of bounties for improving Tcl/Tk, one of which was a

substantial sum of money for a tenfold performance
improvement on his benchmarks. While the authors’ chief

motivation is the improvement of Tcl/Tk for our own use,
the bounty proved that there is enough community interest

that the project is worth pursuing.

Accordingly, discussion started in earnest at the 2013 Tcl

conference and in online media shortly thereafter, with key
ideas coming from the authors, Andreas Kupries, Miguel

Sofer, Don Porter, and Jos Decoster. Through the rest of
2013, and on into 2014, several preliminary studies took

place. One of us (Kenny) developed a translation of Tcl
bytecode into an intermediate language of our on invention

(called quadcode, because initially, all the instructions
were four-element lists) and an embeddable compiler for

the Datalog language in Tcl, used to prototype the complex
analyses required to analyze Tcl well enough to compile it.

Working to the evolving definition of quadcode, Fellows
was able to translate it into the LLVM intermediate lan-

guage.

At the 2014 Tcl/Tk conference, we were able to report on

the Datalog language. Several examples in the talk served
as a “back door” announcement of the ‘quadcode’ project,

and the two of us spent the weekend after the conference in
a room together, integrating the Tcl/Datalog front end with

the LLVM back end. We were able at the end to demon-
strate our first trivial test procedure: a simple loop that

given N, computes the Nth Fibonacci number.

Most of 2015 passed in adding language features one by

one to this code base. While this was going on, we also
were working on speeding up the front end by going to

purpose-built data structures and eliminating Datalog, and
on interprocedural data type analysis. The last is needed

because we can generate much better code if we know the
types of procedure arguments, and in Tcl the types are not

necessarily the same at all places in the program where a
procedure is called. We were able to present this work in

the autumn of 2015 at the Tcl/Tk conference [FELL15],
and thereby to announce the project formally.

2016 was, alas, a slow year for the project, spent chiefly in
consolidating the gains already achieved (while both de-

velopers were busy with other work). In January of 2017,
however, the pace picked up again. Gains have been

achieved this year in node splitting (which will be dis-
cussed in the next section), in the handling of non-local

variables (global and namespace variables, and variables
imported via [upvar]– to be discussed in Section 4), and

in additional language feature support and performance

gains. The remainder of this paper discusses these recent
developments.

3. Node splitting
In the course of attempting to achieve a goal of tenfold
performance improvement that FlightAware had set, we

discovered a significant performance issue with the first
FlightAware benchmark, which tested numeric operations.

The problem was with the simple forward type analysis
that we perform (in which we tag variables with a given

type when they are either constants of that type, or have
been checked at runtime to be of that type). This worked

remarkably well for simple examples such as:

proc x {} {
 set y 0
 for {set i 0} {$i <= 10} {incr i} {
 incr y $i
 }
 return $y
}

The control flow and type analysis for this procedure is
shown in Figure 1.

Figure 1. Simple type analysis

y
1
 ←0

i
1
 ←0

i
2
 ≤ 10?

y
3
 ←y

2
+ i

2

i
3
 ←i

2
+ 1

entry

return y
2

yes

no

y
2
 ←φ(y

1
, y

3
)

i
2
 ←φ(i

1
, i

3
)

y
1
 : integer

i
1
 : integer

y
2
 : integer

i
2
 : integer

y
3
 : integer

i
3
 : integer

Procedure
returns integer

In the figure, the code has been converted to Static Single
Assignment (SSA) form [CYTR91]. The φ is a

pseudo-function that selects a value according to the code
path by which a program reaches a junction point.

Unfortunately, when dealing of different types, for in-
stance, the strings passed in from interpreted code, the type

inference is not nearly so fortunate. Let’s try replacing the
loop starting value with a procedure parameter:

proc x {a} {
 set y 0
 for {set i $a} {$i <= 10} {incr i} {
 incr y $i
 }
 return $y
}

The generated code explodes to the structure shown in

Figure 2. Since the procedure is called from interpreted
code, both parameters are strings. This is not ordinarily a

problem, since we are capable of generating a data type
‘impure integer’ that will hold both a string representation

and an integer internal representation, but this is done only
after a check is made.

If we look at what happened in Figure 2, we see that the
comparison is now a complicated one, because we’re com-

paring a string value against the constant “10”. As experi-

enced Tcl programmers know, this may be a string or nu-
meric comparison, depending on the content of i, which is

initially unknown. The comparison requires two Tcl_Obj’s
as input.

Next, i is checked again for whether it is numeric, and this
time an error is thrown if it is not. Finally, it is promoted to

a native numeric value, accumulated into y, and incre-
mented. The result of the increment is an integer. But this

integer must immediately be discarded! It is about to rejoin
a code path (represented by the φ operation) where a string

is required, so the result object has to be repacked into a
Tcl_Obj.

The result is that the code for the procedure is only a tiny
bit faster than interpreted code; in the worst case, it may be

slower because the memory management of the intermedi-
ate values is not as tightly optimized. Clearly, something

better is needed.

The solution that we choose involves a technique that often

goes by the name of jump threading or loop peeling
[SONG02]. The idea is that the first iteration of a loop,

which contains code that is problematic in some way, will
be peeled off from the rest of the loop by splitting succes-

sive nodes in the control flow. In the case of type ineffi-
ciencies, a problem loop always seems to be flagged by the

fact that one of its variables must be demoted to a weaker
type (often a Tcl_Obj) at the bottom of the loop, as in the

instruction shown in bold text. It is guaranteed that if the
loop that requires weakening is split, more information

about data types will be available to one of the copies.

Figure 2. Inefficient type analysis

y
1
 ←0

i
1
 ←a

i
2
 ≤ 10?

i
3
←GetIntFromObj(i

2
)

y
3
 ←y

2
+ i

3

i
4
 ←i

3
+ 1

i
5
←NewIntObj(i

4
)

entry

return y
2

yes

no

y
2
 ←φ(y

1
, y

3
)

i
2
 ←φ(i

1
, i

5
)

a←objv[1]
b←objv[2]

Is i
2
a number?

i
2
 ≤ 10?

no
Throw error

yes

i
3
 : integer

y
3
 : integer

i
4
 : integer

i
5
 : string

y
1
 : integer

i
1
 : string

y
2
 : integer

i
2
 : string

Complicated
comparison!

Figure 3. Result of node splitting on the problem loop of Figure 2.

The first iteration of the loop turns into straight-line code,

and hence the φ operations may be removed. The remain-
ing operations all start off knowing that i is an integer, and

therefore there is no type checking or type coercion in-
volved. The loop becomes a tight loop in machine code,

performing only native integer arithmetic. The perfor-
mance gain is phenomenal. One of FlightAware’s numeric

benchmarks, a simple loop solving equations in spherical

trigonometry, increased in speed by a factor of 15-20 by

this change alone.

4. Non-local variables
The next project that was taken on was access to variables

that are not local to the procedure. There are essentially
three ways that such a variable can appear:

y
1
 ←0

i
1
 ←a

i
2
 ≤ 10?

i
2
←GetIntFromObj(i

1
)

y
2
 ←y

1
+ i

2

i
3
 ←i

2
+ 1

i
n
←NewIntObj(i

3
)

entry

return y
1

yes

no

a←objv[1]
b←objv[2]

Is i
1
a number?

i
1
 ≤ 10?

no
Throw error

i
2
 ≤ 10?

i
m
←GetIntFromObj(i

4
)

y
5
 ←y

4
+ i

4

i
5
 ←i

4
+ 1

i
n
←NewIntObj(i

4
)

return y
4

yes

no

y
4
 ←φ(y

2
, y

5
)

i
4
 ←φ(i

3
, i

5
)

i
4
 ≤ 10?

yes

y
1
 : integer

i
1
 : string

Complicated
comparison!

i
2
 : integer

y
2
 : integer

i
3
 : integer

y
5
 : integer

i
5
 : integer

Integer
comparison

y
4
 : integer

i
4
 : integer

Is i
4
a number?

no
Throw error

yes

1. It can be brought in as a global variable, using
[global], [variable], [namespace upvar]
or [upvar #0].

2. It can be brought in from a caller’s context with

[upvar].

3. It can be referenced directly using a qualified name
(one that contains :: namespace delimiters).

For the initial implementation, the compiler sacrifices

some performance by declaring that all nonlocal variables
that are aliased into the current procedure will be kept up

to date in the call frame at all times. This decision means
that the compiler will not have to worry about when to

store a value, as opposed to simply keeping it in a register:
nonlocal values are always stored. As time goes on and we

have better understanding of code safety, we intend to
revisit this decision.

The chief consequence of this decision on user code is that
it becomes advantageous to defer writes to global variables

whenever possible. The procedure:

proc accum {args} {
 global n; global s; global ss
 foreach a $args {
 incr n
 set s [expr {$s + $a}]
 set ss [expr {$ss + $a*$a}]
 }
}

will incur a performance penalty relative to a version that
defers global variable updates to the very end:

proc accum {args} {
 global n; global s; global ss
 set n_ $n; set s_ $s; set ss_ $ss
 foreach a $args {
 incr n_
 set s_ [expr {$s_ + $a}]
 set ss_ [expr {$ss_ + $a*$a}]
 }
 set n $n_
 set s $s_
 set ss $ss_
}

There are two reasons that the second version is faster.

1. Nonlocal variables are Tcl_Obj’s at all times, so in the
first version, every assignment to one of the variables

has to pack the value in a Tcl_Obj, incurring memory
management overhead.

2. Nonlocal variables are all presumed possibly to be
aliases of one another: we will discuss this problem

below. The implication is that the compiler does not
know, when it does [incr n], that the statement will

not affect the value of s. Consequently, it must

generate code to re-fetch the value of $s, unpacking it

from a Tcl_Obj and incurring type conversion

overhead, prior to evaluating [expr {$s + $a}].

Local variables are considerably less problematic. The
only time that they must be refreshed is after invoking

another command that may set their values. There is more
detail available for invoked commands. The compiler at

present keeps track of the following things that an invoked
command might do:

• Read or write a variable in the calling procedure

whose name is constant: [upvar 1 a x]

• Read or write a variable in the calling procedure

whose name is passed on the command line:
[upvar 1 $argName x], with optimization

for the common case where the caller passes a

constant as the variable name.

• Read or write a variable in the calling procedure

whose name is neither of the above cases

(requires that all variables be in the callframe at
the time the called command is invoked)

• Read or write a variable whose scope is not

known to be in the calling procedure ([upvar]
to an outer level, or to an unknown level)

• Read or write a global or namespace variable.

In addition, the analysis keeps track of whether a

procedure is free of side effects (in which case, an
invocation can be removed if the results are unused), and

whether the procedure is also independent of the global
state when invoked (in which case, multiple invocations

with the same parameters can be collapsed into a single
invocation).

5. Alias analysis – or the lack
thereof
In all cases, the hard part of working with these variables
is aliasing – the possibility that two different names might

refer to the same variable.

In Tcl, aliasing among global variables is an intractable
problem. Unless we have perfect knowledge of the entire

program, it’s possible for some [eval] somewhere to
execute something along the lines of

 uplevel #0 {upvar 0 a b}

and all of a sudden, $a and $b are the same variable. This

possibility means that in uncontrolled code, any

assignment to a global variable must be presumed to
change any other global variables. The result is that type

information for globals is lost – all must be presumed to be
strings – and that global variable access entails a good deal

of superfluous data motion, type checking and type
conversion.

Similar problems exist with direct variable access,
$::path::to::variable. In addition, direct variable

access to non-fully-qualified names is not supported at the

present time, because it is another thing that is impossible
to analyze. The meaning of a partially qualified name

depends on whether the given variable exists in both the
procedure’s own namespace and the global namespace at

the time that the reference is used. Since code far remote
from the procedure can create a new global variable at any

time, even what variable the name refers to is not
computable in advance.

The authors hope that this particular problem will be
rectified in Tcl 9 by defining it away. In particular, TIP

#278: “Fix Variable Name Resolution Quirks” [SOFE06]
has languished long enough and deserves consideration if

backward-incompatible changes are to be made to Tcl.

Because of potential aliasing issues, the performance of

non-local variables is unacceptable to the authors of this
paper at present, and will have to be addressed moving

forward. There are a couple of options under
consideration.

The first is to have the compiler generate two versions of
the code, one with the maximally optimistic assumption

that no two variables of distinct names are the same
variable, and one with the current pessimistic assumption

that all nonlocal variables are potential aliases of one
another. An enumerated set of variable references in play

in a given context will also be generated. At runtime, on
entry into a context, the references will be checked to see

whether all are distinct, and the appropriate code will be
selected.

This first scheme allows for the common case where
nothing is an alias, but does not give the programmer

fine-grained control if the aliasing is more complicated.
For this reason, another possibility is to introduce an

aliasing assertion, using some command like:

 tcl::pragma::noalias \
 {w x y} {x z} a b c

This command would assert that the variables a, b, c, w,

x, y, z are all distinct, except that any of w, x, y may alias

each other, or x and z may alias each other. In general, the

command would take lists of variables, and assert that any
two variables mentioned on the command line are distinct

unless they are both members of at least one of the lists.

This assertion would actually be valuable to have in

interpreted code as well. A procedure like the [accum]
procedure above would do well to assert that n, s, ss are

all distinct – while it will not crash if they are not, it surely
will not generate the intended result of keeping the count,

sum, and sum-of-squares of a variable.

It is also possible to imagine that the check could be

enabled or disabled on a per-interpreter or per-namespace
basis. This would allow code to proceed with unchecked

alias assumptions. Violating the assumptions would not
crash at runtime in the sense of nasty effects like

segmentation faults, but merely generate incorrect answers
owing to stale values being used for variables.1

The aliasing assertion has yet to be proposed as a formal
Tcl Improvement Proposal because the design is still

incomplete. In particular, we have not yet decided what the
correct assumptions are with respect to the system

variables $::errorInfo and $::errorCode, which

are commonly set ‘behind the program’s back’ when errors
are caught. Surely there are very few Tcl programs out

there that would survive having their globals aliased to one
of these!

6. Summary of project status
The compiler is starting to be in a condition where it can
compile a significant, albeit mostly static, subset of the Tcl

language. It can invoke most builtin Tcl commands, can

1 The authors tend to avoid disabling assertions,
believing Brian Kernighan’s maxim that enabling
assertions while developing and then disabling them in
production is akin to wearing a parachute when a
plane is on the ground and taking it off when the plane
is in the air.

deal with variable references and [upvar], and can

provide significant speedups (well over tenfold in numeric
code, a factor of 2-3 in ‘typical’ code, and perhaps none at

all in string processing code, where Tcl has always
excelled.)

A few significant deficiencies remain, and some of these
will always be there.

First, there is no possibility of dynamic evaluation (using
[eval], [uplevel] or substitution on the first word of

a command). Evaluating unknown code has unknown side

effects, any of which might invalidate the compilation of
already-compiled procedures. Moreover, this sort of

restriction ‘poisons’ all the callers – once a procedure has
unknown side effects, anything that calls it, anything that

calls them, and so on, also has unknown side effects.

Fortunately, dynamic evaluation is generally at an outer

level: inner loops that actually do the computational work,
and are performance critical, generally don’t use it. One

important exception to this rule is user-defined control
structures that use [upvar 1]. Work is in progress to

handle this case, at least for the case where the script to be

evaluated is a constant on the command line that invoked
the procedure.

Similarly, traces are not yet supported, again owing to
uncontrolled side effects. This is a potentially greater

problem, and will probably need to be addressed by
defining the semantics of compiled code in a restrictive

way. If traces have side effects that would change the
semantics of the compiled code, the side effects will not be

honored. (That is to say, if your trace does something like
redefine [::set], you deserve whatever happens to

you!)

Code containers other than procedures, such as the λ-forms
used in [apply] and TclOO methods, are also not yet

supported. The chief obstacles to this work are recognizing

what strings are λ-forms (since the construction of the
form is often remote from its application), and handling

the custom variable resolver required in TclOO methods.
The authors are optimistic that the necessary analyses are

feasible, but this extension will represent a fair amount of
work.

At present, array variables are not supported; when array
references appear in code, they are replaced with

dictionaries. This has been quite successful in practice –
few programs that we’ve tried actually notice the

difference – but will not be interoperable with legacy
uncompiled code, and will have to be addressed.

The generated code is not yet aware of non-recursive
evaluation (NRE), and hence cannot handle [yield] or

[yieldto]. (It can appear in a coroutine, but an attempt

to yield from it will give the dreaded ‘C stack busy’ error.)

We have notes on how NRE might be handled, but
implementation work has not progressed far.

7. Next steps
The relative priority to give to the issues raised in the last
section is something of an open question, and we hope to

gain some insight by interacting with the conference
attendees. There are nevertheless some issues that are

obviously immediate.

First, we need to tidy the code – notably its programming

interface – so as to make it ready for an alpha release. At
this point, we believe that even the limited implementation

we have can be useful, and by actual use we’ll gain
experience in which deficiencies are most critical. In

addition, the code needs to be reconfigured to produce a
loadable DLL rather than loading into a running process.

The result could conceivably replace the aging TDK
Compiler, and would be a better approach to the problem.

The machine code is considerably more obscure than Tcl
bytecode (and the code that we generate doesn't much

resemble the output of existing compilers for languages
like C, so decompiling it would be rather a headache as

well.)

We also need to experiment ourselves with how much of

some large extant code base, perhaps Tcllib, the code is
capable of handling, and the performance that it achieves.

(The hope would be that the C extensions to Tcllib could
eventually wither away in favor of compiled Tcl.)

Native Tcl array support, and the limited support for
control structures based on [uplevel], are also obvious

next steps to expand quadcode’s repertoire.

Beyond the issues mentioned above, there are also various
minor improvements that we expect to make. Introducing

more of Tcl’s own data structures (such as lists, dicts, and
bignums) into the compiled code would likely be a

performance gain. Optimizing the compiler itself is also a
priority, since at this point, the process of translating Tcl to

machine code is painfully slow. Finally, as we carry out
this work, there will likely be “spin-off” technology where

the Tcl Core could benefit from the compiler development.
(tcl::pragma, alluded to in Section 5, would be one

trivial example.)

Finally, the greatly improved numeric performance of the
compiled code suggests that we should also investigate the

incorporation of numeric extensions such as VecTcl
[GOLL14] as a long-term effort.

References
[CYTR91] Cytron, Ron; Jeanne Ferrante; Barry K. Rosen; Mark N. Wegman; F. Kenneth Zadeck. “Efficiently computing
static single assignment form and the control dependence graph.” ACM Trans. on Programming Languages and Systems

13:4 (October, 1991) pp. 451-490.

[DECO17] Decoster, Jos. “llvmtcl” https://github.com/jdc8/llvmtcl, downloaded 23 September 2017.

[GOLL14] Gollwitzer, Christian. “EIAS and numerical math – introducing VecTcl” Proc. 2014 European Tcl Symp.
(EuroTcl 2014).

[FELL15] Fellows, Donal K, and Kevin B. Kenny. “The TclQuadcode Compiler” Proc 22nd Annual Tcl/Tk Conf., Manassas,
Va.: Tcl Community Association, 19-23 October 2015.

[KENN14] Kenny, Kevin. “Binary decision diagrams, relational algebra, and Datalog: deductive reasoning for Tcl.” Proc.
21st Annual Tcl/Tk Conf. Portland, Ore., Tcl Community Association, 10-14 November 2014.

[LATT04] Lattner, C., & Adve, V. (2004, March). “LLVM: A compilation framework for lifelong program analysis & trans -
formation.” In CGO 2004. International Symposium on Code Generation and Optimization, 2004. (pp. 75-86). IEEE.

[SOFE06] Sofer, Miguel. “Fix variable name resolution quirks.” Tcl Improvement Proposal #278. Tcl Core Team: 2006,
https://core.tcl.tk/tips/doc/trunk/tip/278.md.

[SONG02] “A technique for variable dependence loop peeling.” In Proc. 5th Intl. Conf. on Algorithms and Architectures for
Parallel Processing. IEEE, Beijing, 2002. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.4406

[UGUR10] Ugurlu, Ozgur Dogan, and Kevin B. Kenny. “A bytecode assembler for Tcl.” Proc. 17th Annual Tcl/Tk Conf.,
Oak Brook Terrace, Ill., Tcl Community Association, 11-15 October, 2010.

https://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/.../dogeen.pdf.

[TCC17] “tcc4tcl” https://chiselapp.com/user/rkeene/repository/tcc4tcl/index, downloaded 23 September 2017.

https://www.tclcommunityassociation.org/wub/proceedings/Proceedings-2010/.../dogeen.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.4406
https://core.tcl.tk/tips/doc/trunk/tip/278.md
https://github.com/jdc8/llvmtcl
https://chiselapp.com/user/rkeene/repository/tcc4tcl/index

	1. Review: what is tclquadcode?
	2. History of the project
	3. Node splitting
	4. Non-local variables
	5. Alias analysis – or the lack thereof
	6. Summary of project status
	7. Next steps

