
Advanced Windows Integration 
with Eagle, Garuda, & Harpy 

 
Joe Mistachkin @ Tcl 2016 

https://eyrie.solutions/

https://eyrie.solutions/
https://eyrie.solutions/
https://eyrie.solutions/

Overview

What is Eagle?
• Eagle (Extensible Adaptable Generalized Logic Engine) is

an implementation of the Tcl scripting language for the
Common Language Runtime (CLR).

• It is written completely in C#. Superficially, it is similar to
Jacl; however, it was written from scratch based on the
design and implementation of Tcl 8.4.

• It provides most of the functionality of the Tcl 8.4
interpreter while borrowing selected features from both
Tcl 8.5 and 8.6.

• There are some extra features that are not present in
native Tcl, mostly for dealing with Windows and the .NET
Framework.

What can Eagle do for me?

• Help you to seamlessly integrate with
applications, libraries, and system
components on Windows.

• Help you to securely deploy applications
and packages written in Eagle or native Tcl
to your users.

Integration

Like Tcl before it, 
Eagle enables integration.

• COM components via [object] command
• .NET Framework via [object] command
• Databases via [sql] command
• Native Tcl/Tk via [tcl] command
• Native DLLs via [library] command
• Web via [uri] command
• Other protocols via [socket] command
• Command line tools via [exec] command

Case Study: Win32

How can I prevent the native console
window from closing?

• Using the Win32 API via Eagle.

• With the [library] command, you can access
native APIs, including those provided by the
underlying operating system.

• The necessary code can be found in the script
file:
– examples\Win32\ex1.eagle

Case Study: COM

Can I use a COM class?

• If you have the Primary Interop Assembly (e.g.
for Microsoft Office), you can [object load -
import] it and use COM “early-bound” (see
https://urn.to/r/pia).

• Otherwise, you’ll be using COM “late-bound”;
example code can be found in the “object-15.10”
test for the Eagle core library.

https://urn.to/r/pia

Case Study: calc.exe

How can I automate GUI applications?

• Per a post to the “tcl-core” mailing list,
somebody wanted to automate the
venerable “calc.exe” applet that ships with
Windows 7.

• They referred to an existing, non-working,
example written in PowerShell.

• The working example, written in Eagle, can
be seen in the script file:
– examples\calc.exe\ex2.eagle

Why does this matter?

• Subjectively, the Eagle script seems easier to
understand and it is less verbose.

• The user wanted to use native Tcl.
– This can be accomplished by using Garuda to

evaluate the Eagle script.

• Yes, it is a “toy” example; however, it shows that
Windows applications supporting advanced
accessibility can be automated using native Tcl.

Non-Trivial Accessibility Example

• Assistive Context-Aware Toolkit (ACAT) is
an open source platform developed at Intel
Labs to enable people with motor neuron
diseases and other disabilities to have full
access to the capabilities and applications
of their computers through very
constrained interfaces suitable for their
condition (see https://urn.to/r/acat).

https://urn.to/r/acat
https://urn.to/r/acat

Non-Trivial Accessibility Example
(continued)

• Since ACAT is written entirely in C#, it is
easily usable from Eagle.

• Using something like ACAT from native Tcl
(i.e. without Eagle) would not be possible.

Case Study: Excel

How can I automate Excel?

• Really, this is just an example of using
COM early-bound, via a Primary Interop
Assembly.

• It applies to any part of Microsoft Office,
not just Excel.

• Example code can be found in the
“excel-2.1” test for the Eagle core library.

Case Study: Mathematica

How can I automate Mathematica?

• Wolfram Research provides a managed
assembly called “NETLink”.

• As with any other managed assembly, it is
easy to access using Eagle.

• Example code can be seen in the script
file:
– examples\Mathematica\ex3.eagle

Case Study: WinForms

How can I create a GUI application?

• The simplest way to create a GUI
application when running on the .NET
Framework is via Windows Forms
(WinForms).

• Example code can be found in the
“winForms-8.1” test for the Eagle core
library.

Case Study: Tcl/Tk

How can I use native Tcl/Tk?

• Eagle is a stand-alone implementation of Tcl.
– Why would you want to access native Tcl from it?
– Why not?

• The [tcl] command provides the ability to
dynamically load, use, and unload any supported
native Tcl library.

• Example code can be seen in the script file:
– examples\Tcl\ex4.eagle

Case Study: SQLite

How can I use SQLite?

• When using the .NET Framework,
database access is typically accomplished
via ADO.NET.
– PostgreSQL, MySQL, Oracle, SQL Server, and

SQLite are all supported, via their associated
ADO.NET providers.

• Example code can be seen in the script
file:
– examples\SQLite\ex5.eagle

Case Study: Fossil

How can I automate command line
applications?

• The [exec] and [kill] commands provide the
ability to manage external processes.

• The Unix-centric redirection syntax from native
Tcl is not supported, nor are the command
pipelines; however, many options have been
carefully added in order to facilitate important
integration scenarios.

• Example code can be seen in the script file:
– examples\Fossil\ex6.eagle

Case Study: #record

How can I save interactive commands?

• The REPL exposes an interactive input callback
that receives all interactive input and may allow it
verbatim, alter it, or cancel it.

• This feature can be used to save all interactive
commands to a file (e.g. upon exiting the shell,
etc).

• Example code can be seen in the script file:
– examples\#record\ex7.eagle

A bit about interactive commands…

• All interactive commands start with a “#”
character (try “#help” to see them).

• They may be built-in or “extensions”.
• Interactive extension commands may override

built-in interactive commands.
• An extra “#” character may be used to force an

built-in interactive command to be used.
• An extra two “#” characters may be used to

bypass the interactive input callback.

Case Study: #check

How can I check for updates?

• There is “#check” built-in interactive
command that checks the latest release
version against the one currently running.

• It is designed with security in mind.
• All communication is done using SSL.
• All downloaded binaries are signed and

hashed, with multiple algorithms.
• If an update is needed, the dedicated

updater tool “Hippogriff” is launched.

Case Study: Remote
Debugger

How can I debug a script running
somewhere else?

• Using the [socket] command and the
ScriptThread class, it is relatively easy to
inspect an Eagle interpreter in a different
process or on a different machine.

• The necessary code can be found in the
directory:
– examples\RemoteDebugger

Other Integration

But wait, there’s more!

• MSBuild
– There are custom “build tasks” that expose

Eagle to projects that use MSBuild.
• PowerShell

– There are custom “cmdlets” that expose Eagle
to PowerShell scripts.

• WiX
– There is a custom “extension” that exposes

Eagle to installer projects that use WiX.

Ok, but I use native Tcl.

• Using native Tcl is fine, of course; however,
that does not mean you have to use it
exclusively.

• Native Tcl is cross-platform; however, when
your primary (or only) platform is Windows,
taking full advantage of its features may be
advantageous.

Plugins

What is an Eagle plugin?

• A managed (CLR) assembly (binary)
containing executable code that defines
one or more classes implementing the
IPlugin interface and providing a suitable
constructor.

• Typically, a plugin will add one or more
commands to the interpreter; however, this
is not required.

What is Harpy?

• Harpy is an Eagle plugin.
• Originally, it provided public key

infrastructure-based software license
enforcement.

• Enhanced to provide signed script
verification and evaluation.

• Supports management of license
certificates, script certificates, and trusted
key rings.

What is Garuda?

• Garuda (a.k.a. the “Eagle Package for Tcl”)
is a stubs-enabled package for Tcl that
provides any application using Tcl full
access to components written for the
Common Language Runtime (CLR).

Native Tcl?

What about native Tcl scripts?
• Originally, Eagle was designed to be a standalone library

that simply provided a purely managed (via C#)
implementation of Tcl, without using P/Invoke or “unsafe”
code.

• Eventually, Eagle was extended to provide optional
compile-time features that were allowed to use P/Invoke.

• This permitted the creation of the native Tcl integration
subsystem (e.g. the TclWrapper class, etc).

• Much later, the Garuda native package for Tcl was
created. It leveraged the existing native Tcl integration
subsystem of Eagle, after bootstrapping the CLR in the
native Tcl process, to enable seamless integration of
native Tcl with Eagle.

Using Eagle from native Tcl?

• Yes, using Garuda, it is possible to make full use
of Eagle, including its plugins, from native Tcl.

• By default, an [eagle] command gets added to
the native Tcl interpreter, which simply calls into
the Eagle [eval] command.

• The integration between native Tcl and Eagle can
be customized; however, the defaults are good
enough for most uses.

I still don’t understand.

• To summarize:

– Using Eagle and Garuda together allows any
supported native Tcl (i.e. version 8.4 or higher,
including TclKits and KitDlls) to have complete
access to all functionality provided by the CLR,
the .NET Framework, and anything built on top
of them.

Garuda

Installing Garuda (and Eagle)
• The “easy” way is to use the Teacup tool included with

ActiveTcl; however, the Garuda binary in the ActiveState
package repository has not been updated in quite some
time, e.g.:

 CD /D "C:\path\to\ActiveTcl\bin"
 teacup install Garuda

• The “hard” way involves downloading the appropriate
Garuda and Eagle binary packages and extracting them
using zip into a directory that will be added to the auto-
path for the desired installation of Tcl, e.g.:
– https://urn.to/r/eagle_pkg
– https://urn.to/r/garuda_pkg

https://urn.to/r/eagle_pkg
https://urn.to/r/eagle_pkg
https://urn.to/r/garuda_pkg
https://urn.to/r/garuda_pkg

Garuda Example #1

NOTE: This is the only required command.

package require Garuda; # a few seconds…

NOTE: The following commands are optional…

garuda dumpstate; # observe…
eagle parray tcl_platform; # observe…
garuda shutdown; # cleanup…

What just happened?

• The Garuda native Tcl package was loaded into
the interpreter.

• Per its default behavior, this process involved
loading the CLR into the process, starting it,
loading the Eagle managed assembly into the
default application domain (more on this later),
and calling into Eagle to setup the bidirectional
bridge between native Tcl and Eagle.

• All of the above happened in response to the
[package require Garuda] command; all
the other example commands simply
demonstrate using the package.

That sounds complicated.

• Internally, it is a bit complicated; however, the
only script-visible “side-effects” that really matter
are the two new commands that were added to
the native Tcl interpreter, e.g.:
– [garuda]

• This command is used to startup and shutdown the CLR as
well as introspect various state information associated with
the Garuda package (more on this later).

– [eagle]
• This command is used to evaluate an Eagle script in the

Eagle interpreter associated with the current native Tcl
interpreter (more on this later).

Garuda and “NativePackage”

• The “NativePackage” class in the Eagle
core library implements the non-native (i.e.
managed) entry points used by Garuda.

• Garuda supports connecting to Eagle via
the default AppDomain.

• It supports “safe” native Tcl interpreters.
• It supports Eagle interpreter isolation.

Eagle Enterprise Edition

Commercial Licensing

• The Harpy and Badge plugins are both
commercial products.

• The files on the provided USB thumb drive
are licensed for your private use only; they
are not for redistribution.

• A commercial license may be obtained, at
a specially discounted “conference tutorial”
rate, directly from me…

• Also see: https://urn.to/r/eee_license

https://urn.to/r/eee_license
https://urn.to/r/eee_license

Harpy & Badge

Installing Harpy

• Copy the Harpy distribution files to a (new)
subdirectory “lib\Harpy1.0” within the
Eagle installation directory (i.e. the
directory that contains the “bin” and “lib”
subdirectories).

• Set the environment variable
“Master_Certificate” to the fully
qualified path to the license certificate file,
typically via the Control Panel applet.

Installing Badge

• Copy the Badge distribution files to a (new)
subdirectory “lib\Badge1.0” within the
Eagle installation directory (i.e. the
directory that contains the “bin” and “lib”
subdirectories).

They are installed, now what?

• Having the Harpy (and Badge) plugins installed
allows you to load them via “[package
require]”.

• Typically, there are at least three phases when
the signed script evaluation feature is going to be
used:
– Loading the Harpy plugin.
– Configuring the Harpy plugin for signed-only script

evaluation.
– Loading the Badge plugin.
– The Badge plugin provides the script certificates for all

core script library and test files.

Loading Harpy & Badge
STEP 1: Load the Harpy plugin.
package require Security.Core
STEP 2: Enable Harpy policies.
security true
STEP 3: Load trusted keyring(s).
keyring bootstrap
STEP 4: Load the Badge plugin.
package require Security.Certificates

Harpy Demo

That was quite complex.

• It’s a bit complex because the Harpy and
Badge plugins are modular and designed
to support multiple scenarios.

• However, most of the time, the command
[source enableSecurity] should be
used instead (via the “-security”
command line option).

• There is a corresponding [source
disableSecurity] command as well.

They are loaded, now what?

• As long as the signed-only script policy is
enabled, all attempts to use [source] will
result in Harpy verifying the script
certificate associated with the target script
file.

• If the script file being evaluated is not local
(i.e. [source] was used on a remote
URI), Harpy will attempt to download the
script certificate and then verify it.

How does this apply to native Tcl?

• Since the native Tcl [source] command
is not handled by Harpy, how can it be
used to secure native Tcl scripts?

Harpy from native Tcl…

• How do we take advantage of the
underlying Harpy signed-only policy
functionality when evaluating a native Tcl
script?

[interp readorgetscriptfile]

Other alternatives…

• Of course, you could replace the Tcl
[source] command with something that
takes advantage of Harpy.

• However, that is far more intrusive than
simply using the [interp
readorgetscriptfile] Eagle sub-
command followed by the native Tcl
[eval] command.

 Does it work on Mono?

Yes.

Quiz #1

 How dangerous is the following command?

 source http://example.com/file.tcl

 Why?

 What does it do in native Tcl?

 What does it do in Eagle?

Quiz #2

• Can we make it safer?

• How?

Wrapped Script Demo

So, what did we just see? (#1)

• Load an Authenticode signed native Tcl
library using default search semantics:

 tcl load –findflags \
 +TrustedOnly –loadflags \
 +SetDllDirectory

So, what did we just see? (#2)

• Setting up the native Tcl interpreter with
variables, a procedure, etc:

 tcl eval [tcl master] {
 set argv {}
 # ... etc ...
}

So, what did we just see? (#3)

• Load the Harpy plugin:

 package require Security.Core

So, what did we just see? (#4)

• Enable the Harpy signed-only policy:

 security true

So, what did we just see? (#5)

• Load the trusted key rings:

 keyring bootstrap

So, what did we just see? (#6)

• Read the source code for Tk Tetris:

 set scriptFile \
 [file join $path tetris.tcl]

 set script \
 [interp readorgetscriptfile \
 -- "" $scriptFile]

So, what did we just see? (#7)

• Copy the Tk Tetris source code into the
native Tcl interpreter:

 tcl set [tcl master] script \
 $script

So, what did we just see? (#8)

• Have native Tcl service events...

 tcl eval [tcl master] {
 eval $script
 after 0 list
 vwait forever
 unset -nocomplain forever
 }

So, what did we just see? (#9)

• Unload native Tcl (optional):

 tcl unload

So, what did we just see? (summary)

• The important steps were from #3 to #6,
simplified and shown here:

 package require Security.Core
 security true
 keyring bootstrap
 interp readorgetscriptfile \
 -- "" tetris.tcl

Ok, but how does that improve
security?

• For fun, we’ll run the demo again, but this
time we’ll slightly alter the “tetris.tcl” file
first.

Threats

1. Web server is (or becomes)
compromised.

2. Man-in-the-middle of HTTP response.

3. Malicious script.

Defences
• The client does not really care about the web server, per

se; it only cares about the script(s) that it downloads.
Therefore, it can use the Harpy signed-only script policy
to defend against this threat.

• We can (and should) use HTTPS. This is not a Harpy
requirement, it’s just a good security practice.

• We can use a “safe” interpreter. Depending on who
signed the script and how “trusted” they are, this may be
overkill.

What have we learned?

• When using the Harpy signed-only policy,
any script that is unsigned or has been
altered in any way since being signed will
cause the Eagle script engine to reject it.

Security & Stability

Denial of Service (DoS)

• Consuming CPU cycles.
– e.g. while 1 {}

• Causing a hard stack overflow.
– e.g. proc r {} {r}; r

• Causing a hard out-of-memory error.
– e.g. set x 1; while 1 {set x xx}

• Corrupting the interpreter state.
• Crashing the process or operating system.

Information Disclosure

• Detailed version information.
– For the operating system.
– For the Eagle core library.
– Can be used to target vulnerabilities.

• Operating system and environment information.

• User information.
– Any information accessible via the currently logged in

account.

Elevation of Privilege (EoP)

• Escaping the “safe” interpreter.

• Escaping the AppDomain.

• Escaping the process and/or session.

• Escaping the machine.

Generalizations for Security

• You cannot have security without stability.
• You can only ever be as secure as the underlying

platform.
– Think “full stack” here, including the hardware,

operating system, and runtime / virtual machine.
• You are only as secure as your least secure

component or layer.
• You are rarely as secure as you think you are.
• If you have not tested your security, you are not

secure.

Surface Area

• What is the surface area of the system?
– Can it be reduced and still retain all the

necessary functionality?
• How are users expected to access it?

– e.g. Thick client/server, web site, etc.
• Can users access it any other way?

– e.g. Talk directly to the server (i.e. bypass
client), connect to local database, etc.

Microsoft.NET versus Mono

• Any version of the Microsoft.NET implementation
of the CLR running on Windows is more stable
and secure than any version of Mono running on
any operating system.

• Recent versions of Mono (e.g. 4.x) are getting
better, partially due to including more code from
Microsoft verbatim; however, they still have a
long way to go.

What security does Eagle provide?

• Core script engine.
– Supports on-demand script cancellation and timeouts.
– Handles soft stack overflow errors gracefully, avoiding hard stack

overflow errors.
– Handles out-of-memory gracefully, mostly thanks to the CLR itself.
– Prevents unhandled exceptions from being thrown by a script being

evaluated.

• interp create
– Use the “-safe” option to limit surface area.
– Use the “-isolated” option to create an entirely new AppDomain (more

on this later).

• load
– Capable of loading each plugin into a new AppDomain.
– Capable of verifying Authenticode and strong name signatures.

What security does Harpy provide?

• Signed-only script policies.
– Prevents any unsigned (or untrusted) scripts

from being evaluated using [source] and its
associated script commands and/or managed
API methods.

• License verification.
– Prevents any protected plugin from being

loaded unless an appropriate license can be
located and verified.

Compatibility

Compatibility with Tcl
• More-or-less 100% compatible with Tcl 8.x, where “x” is currently 4.

Missing [binary], [scan], and [trace].

• Yes, it runs on Mono.

• Yes, it has namespaces (no creative reading or writing).

• Has TIPs #127, #178, #182, #194, #207, #241, #269, #285, #405,
#426, #429, and #440.

• If all else fails, you can still use native Tcl from Eagle, completely
seamlessly (e.g. Tk with WinForms or WPF, etc).

Advanced Eagle

Common Options & Idioms

• Typed options (bool, int, wide, enum, type,
type list, etc).

• Flags values (enum with Flags attribute).
• Opaque object handles and reference

counting.
• Using [object create], [object
invoke], and [object dispose].

• Options used for CLR / .NET Framework
integration).

Typed Options

• Must have a value, e.g.: -name value
• Values must conform to the type.
• Boolean must be 0, 1, “false”, “true”, et al.
• Integers may be base 2, 8, 10, or 16.
• Enumerated values use the name of the

value, e.g. “Red” for “ConsoleColor.Red”.
• Type values must resolve to the name of a

loaded type (e.g. “Int32”, “String”, etc).

Flags Values

• Enumerated types decorated with the
FlagsAttribute are treated specially.

• Like normal enumerated values, either the
name (or an integer) may be used to
specify a single value, e.g. “Space” or 0x2
for CharacterType.

• Unlike normal enumerated values, the
value may be a list of values and each one
may be prefixed by an “operator”.

Flags Operators

• Operate on the old flags and the new flags
as their operands.

• The “+” (add) operator adds flags to the old
flags.

• The “-” (remove) operator removes flags
from the old flags.

• The “=“ (set) operator discards all flags in
favor of the ones that follow.

Flags Operators (continued)

• The “&” (keep) operator retains only those
flags that match the mask that follows.

• The “:” (set-then-add) operator initially
discards all flags in favor of ones that
follow and then switches to “+” (add) mode.

Loading Assemblies

• Managed assemblies may be loaded using
the [object load] sub-command. If the
reside in the Global Assembly Cache
(GAC) or along the probing path for the
application domain, no other options are
necessary.

• To load an assembly from a specific
location, the -loadtype File option
must be used.

Type Names

• All type names must be fully qualified
unless they have been imported, implicitly
or explicitly, using the [object import]
sub-command.

• By default, the following namespaces are
implicitly imported into every interpreter:
–System
–Eagle._Components.Public
–Eagle._Containers.Public

Opaque Object Handles

• Returned by various commands to refer to
a specific CLR object.

• May be stored in any variable and will be
automatically reference counted. When
the reference count is zero, the object will
be disposed.

• The default reference counting and
disposal behavior may be overridden
(which is sometimes necessary).

Opaque Object Handles (continued)

• Introspection via [info objects] and
various [object] sub-commands.

• Reference counted via an interpreter-wide
variable trace.

• When created with the -alias option, a
command will be added as well, to permit
invocation using the syntax:
– $handle MethodName arg1 … argN

Opaque Object Handles (continued)

• The null opaque object handle is special.
• It always represents a null value; thus, it may

only be used where the value of a reference type
is expected.

• It cannot be modified or removed.
• It is always present, even in “safe” interpreters.
• There is a null global variable that points to it;

therefore, it can be passed by value or by
reference.

[object create]

• Used to create a CLR object of a specific
type by calling one of its constructors.

• Returns an opaque object handle with a
reference count of zero.

• Any parameters to the constructor should
be passed immediately after the CLR type
name.

• Example: [object create Int32]

[object create] (continued)

• Normally, the return value should be
captured into a variable for subsequent
use.

• The -alias option should be specified if
the script intends to call one or more
members on the object.

[object invoke]

• Used, directly and indirectly, to call a member on
a CLR object or type (e.g. for static members).

• Returns a value based on the target member
return type.

• Supported return types will be automatically
converted to a string.

• To force object creation (i.e. instead of a string),
use the -create option, with the -alias option
if the script intends to call one or more members
on the object.

[object invoke] (continued)

• Yes, you can invoke that member.

• The general guidelines are:

– If it does not work or does not do what you want, you
probably need more flags.

– If the types do not seem to match up correctly, you
may need to use the -parametertypes option,
which accepts a list of CLR type names corresponding
to the ones for the desired method overload.

[object invoke] (continued)

• Supports fields, properties and methods.
• Supports all CLR types, including generics.
• Supports Nullable value types.
• Supports arrays, multi-dimensional,

nested, etc.
• Supports ByRef for all of the above.
• Supports delegates (i.e. managed function

pointers) with arbitrary method signatures.

[object invoke] (continued)

• Unfortunately (?), there are a huge number
of options available.

• Most options are needed rarely.
• Key options include:

– The -flags option (with +NonPublic).
– The -objectflags option (with
+NoDispose).

– The -marshalflags option (with
+DynamicCallback).

Private Members?

• Yes, you can invoke any private member.

• In general, this should be considered as a
“last resort”.

Eagle Core Library?

• Yes, you can invoke any member of any type in
the Eagle core library (i.e. “Eagle.dll”).

• In fact, the test suite does this quite often in order
to verify correct operation of various subsystems.

• Invoking private members in the Eagle core
library is not guaranteed to work between
versions as members may be added or removed
and/or the method signatures may change.

Nested Objects & Members

• When using [object invoke], the
object and member arguments may use
period delimited names.

• For the object argument:
– The first part may be an opaque object handle

or a type name.
– Subsequent parts must be member names

that do not require any parameters.

Nested Objects & Members
(continued)

• For the member argument:
– All parts, except the last one, must be member

names that do not require any parameters.

Method Overload Resolution

• First, all methods for the target type are
filtered by the selected binding flags.

• Next, methods are filtered by name.

• Next, methods are filtered by expected
parameter counts (minimum / maximum
versus arguments).

Method Overload Resolution
(continued)

• Next, methods are filtered by the specified
parameter types, if any.

• Next, methods are filtered based on the
provided arguments.

– Each argument is checked, in order, to see if it
can be converted to the expected type for the
method overload being checked.

Method Overload Resolution
(continued)

– If the argument cannot be converted, the
method overload is disqualified and errors may
be logged for later use.

– If the argument can be converted, the new
(typed) value is stored for later use.

– When attempting to convert an argument, the
currently registered IBinder for the
interpreter is consulted.

Method Overload Resolution
(continued)

– Deeper down, the provided binder (i.e.
ScriptBinder) consults the registered “change-
type” callbacks, which may be customized.

– All primitive types provided by the CLR have built-in
change-type callbacks registered with the built-in script
binder.

– These can be overridden or removed if necessary.

Method Overload Resolution
(continued)

• If the number of filtered method overloads
so far exceeds the value for the -limit
option, if specified, the filtering stops.

– By default, there is no limit on the number of
method overloads.

Method Overload Resolution
(continued)

• Next (optional), the list of filtered method
overloads is reordered based on the
specified criteria.

– To use this feature, specify the -
marshalflags +ReorderMatches option.

– Depending on the desired ordering, the -
reorderflags option may also be
necessary.

Method Overload Resolution
(continued)

• Next, from the filtered list of method
overloads, the final method overload is
selected.

– By default, the first one is selected.

– This can be overridden using the -index
option.

Method Overload Resolution
(continued)

• If there is any ambiguity based on the
specified arguments, using the -
parametertypes option is
recommended.

– This will generally force the method overload
with exactly the same parameter types to be
selected.

ByRef Parameter Handling

• Before calling the target method, all output
parameters must be resolved.

• Each argument to [object invoke], et
al, that corresponds to a ByRef parameter
must be the name of an existing variable in
the current call frame.

ByRef Parameter Handling (continued)

• The variables referenced must contain values
that are compatible with the formal types
associated with the method overload parameters.

• For arrays, the variable must be an array
containing elements compatible with the formal
type.

• Typically, this is accomplished using opaque
object handles; however, that is not only way.

ByRef Parameter Handling (continued)

• For output parameters of reference types,
the following pattern is somewhat common:

set varName null
object invoke $o Method varName

ByRef Parameter Handling (continued)

• Upon returning from calling the target
method, any output (i.e. “by-reference”)
parameters are extracted and set into the
variable names specified in the original
[object invoke] call.

– Arrays are supported and the corresponding
variable name must be undefined or a Tcl
array of the necessary rank.

ByRef Parameter Handling (continued)

• For each output parameter, the value will
be handled just as though it were a return
value.

• That means the information in the “Return
Value Handling” section will apply to these
values as well.

Return Value Handling

• The return value for the method overload is
converted to a string.
– Depending on the return type and value, this

may involve creating a new opaque object
handle.

– By default, all primitive types that can be
converted to a string without losing any
information will be converted to a string.

Return Value Handling (continued)

– When checking if a return value can be
converted to a string, the registered script
binder (and indirectly its registered “to-string”
callbacks) are consulted.

• The default handling for all non-primitive
types, including value types, is to create a
new opaque object handle.

Introspection

• The [object assemblies] and
[object members] sub-commands are
quite useful.

• The [object assemblies] sub-
command returns a list of managed
assemblies that have been loaded into the
current application domain, optionally
filtered by a pattern.

Introspection (continued)

• The [object members] sub-command
returns a list of methods, properties, and
fields for an opaque object handle or type
name, optionally filtered by a pattern.

• There are many options for [object
members] that can make filtering and
result handling easier.

Introspection (continued)

• Useful options for [object members]
include:

 -matchnameonly

 -nameonly
 -mode

 -pattern
 -signatures

Iteration

• The [object foreach] sub-command
can iterate over any object that implements
the IEnumerable interface, including
managed arrays, collections, etc.

Iteration (continued)
object import System.Reflection

set assms [object invoke \
 –create Assembly.GetEntryAssembly \
 GetTypes]

object foreach -alias t $assms {
 puts stdout [$t FullName]
}

Questions & Answers

Contact Information

• Eyrie Solutions
 sales@eyrie.solutions

• The Eagle Project
 https://eagle.to/

• Me (Joe Mistachkin)
 joe@mistachkin.com

mailto:sales@eyrie.solutions
https://eagle.to/
mailto:joe@mistachkin.com

