
Core-Style Arguments for Script Commands

Cyan Ogilvie
Ruby Lane, Inc.

cyan@rubylane.com

November 17, 2016

Abstract

Many core Tcl/Tk commands use named, optional arguments:

glob -nocomplain -type f -tails -directory $spooldir *@*

lsort -index 0 -stride 2 -dictionary $search_counts

entry .pw -show * -textvariable pw -width 15

But no support for this pattern is provided by the argument parsing of [proc]-defined
commands, leading to horrors like:

searchdb "" $ss 0 notice "" "" $style $db $maxresults "" "" "" 1 "" \

0 progresults "" "" "" "" 0 "" "" $userid $newtestrate 0 "" "" $website

parse args 1 is a C extension using a custom Tcl ObjType to provide core-like ar-
gument parsing at speeds comparable to proc argument handling, in a terse and self-
documenting way.

1 Script-Defined Commands are Second Class Citizens

Positional arguments start to hurt readability once the arity exceeds 2 or 3, sometimes more
if the set and order of the arguments is naturally obvious (foreach v1 $list1 v2 $list2

$script), less where it isn’t (is it lsearch $list $pattern or lsearch $pattern $list?).
For this reason the great majority of core Tcl commands that exceed 3 arguments employ a
system of optional, named arguments:2

binary, chan, clock, exec, fconfigure, fcopy, file, glob, interp, load, lsearch, lsort, namespace,
package, puts, read, regexp, regsub, return, socket, source, string, subst, switch, unload,

1https://github.com/RubyLane/parse args
2I’ve considered the arguments that name an ensemble command part of the command, not the arguments

for this survey

unset, zlib, pack, clipboard, place, event, wm, focus, font, winfo, grab, selection, send, grid,
tk, bell and all Tk widget constructors and instance commands.

The exceptions are control structures (dict {filter,for,map}, for, foreach, if, lmap,
try) for which the order is naturally clear; and the two that take 4 args: trace remove and
lreplace.

Clearly it’s Tclish to use named arguments, but the language provides no support for this
pattern to script-defined commands created via proc, apply, method and coroutine. Of
these, the first three provide support for positional arguments and default values, and the
last (coroutine) provides no argument parsing at all, deferring to the script to interpret and
verify its arguments.

Of course Tcl is expressive enough that script-defined commands can mimic all of the con-
ventions established by the core commands, but implementing this in Tcl script has some
major disadvantages:

• It’s slow - about 50 times slower than native argument handling.

• It clutters procedure implementations with code that is orthogonal to their core mis-
sion.

• It obscures procedure signatures.

• Stack traces are less clear when argument requirements are not met.

These mean that core-style argument conventions are very rarely employed by script-defined
commands, leaving them as second class citizens in their own language.

2 Conventions Established by the Core

Surveying the core commands that use named parameters reveals the following patterns:

• “-foo”: a boolean toggle “foo” is enabled, its absence means that the toggle is disabled
(e.g. -nocase, -all).

• “-foo bar”: an argument named “foo” is assigned the value “bar”. In some cases, not
specifying the argument means that it takes a default value (e.g. regexp -start),
in other cases that triggers behaviour different to all possible values (e.g. lsort

-command).

• “-foo” / “-bar” / “-baz”: a set of boolean-style arguments that are mutually exclusive
and select a value for a single logical argument (e.g. lsort -ascii / -integer /

-dictionary).

• “--”: signals the end of the named options, further arguments are interpreted as posi-
tional parameters even if they would have matched a named argument (not universal).

• When contradicting arguments are given, later arguments override earlier ones: lsort
-increasing -ascii -dictionary -decreasing $list uses dictionary comparison,
decreasing order (possibly not universal).

parse args is an extension that implements these patterns, prioritizing performance (so that
hot code can use it guilt free); clarity (so that function signatures are obvious without
requiring additional documentation); and terseness (lowering the cognitive burden to write
and understand code using it).

As an example, a script implementation of the glob command might start like this:

proc glob args {

parse_args $args {

-directory {}

-join {-boolean}

-nocomplain {-boolean}

-path {}

-tails {-boolean}

-types {-default {}}

args {-name patterns}

}

if {$join} {

set patterns [list [file join {*}$patterns]]

}

if {[llength $patterns] == 0 && $nocomplain} return

foreach pattern $patterns {

if {[info exists directory]} {

...

}

}

...

}

And regexp:

proc regexp args {

parse_args $args {

-about {-boolean}

-expanded {-boolean}

-indices {-boolean}

-line {-boolean}

-linestop {-boolean}

-lineanchor {-boolean}

-nocase {-boolean}

-all {-boolean}

-inline {-boolean}

-start {-default 0}

exp {-required}

string {-required}

matchvar {}

args {-name submatchvars}

}

...

}

3 Performance

Two design goals are in conflict when it comes to designing the signature format: intuitive
definitions and high performance. Choosing a syntax that is easy for programmers to write
and understand leaves more work for the code that interprets that syntax.

To reconcile these, parse args saves the parsing configuration that it builds from the sig-
nature definition as the internal representation of a custom Tcl ObjType (the string rep-
resentation is just the signature definition as supplied). In this way the expensive work of
interpreting the signature definition is only done once, when it is first used. This also neatly
hooks memory management into the natural lifecycle of the definition, and ensures that
Tcl Objs aren’t shared across Tcl Interp instances or threads.

Part of the parsing configuration saved in the internal representation are string tables used to
look up option names using Tcl GetIndexFromObj. Since Tcl GetIndexFromObj shimmers
the input Tcl Obj to a specialized type that saves the index found, subsequent lookups are
very fast. A similar approach is used to efficiently validate enum-style options whose value
must belong to a defined set (such as the -state option of most Tk widgets).

Tcl Objs for the default values and enum choices are stored in the internal representation,
leaving very little allocation of Tcl Objs at parse time - almost all work is copying pointers
and incrementing reference counts.

Performance is good enough that it is nearly on par with native positional argument support
(times are in microseconds):

tcl parsing 24.540
native 0.535

parse args 0.838

Strange function signature is to allow the benchmarking machinery to

pass the same args to both procs

proc native {t_a title c_a category w_a wiki {r_a rating} {rating 1.0}} {

list $title $category $wiki $rating

}

proc using_parse_args args {

parse_args $args {

-title {-required}

-category {-default {}}

-wiki {-required}

-rating {-default 1.0 -validate {string is double -strict}}

}

list $title $category $wiki $rating

}

4 Beyond Parsing proc Arguments

Rather than provide a custom shim over proc that replaces the argument list parameter
with a richer signature description 3 I opted to expose the argument parsing facility as a
separate command. This allows it to serve in more contexts than just proc commands:
TclOO constructors and methods; lambdas; command line parsing; configuration file han-
dling; etc.

One particularly useful case is handling coroutine resume arguments, since no support is
provided by the core for handling these beyond just supplying the list of arguments it was
called with. A bit of boilerplate allows parse args to be neatly slotted into place to handle
these arguments:

coroutine foo apply [list {} {

set res {}

set options {-code 0 -level 0}

while 1 {

catch {

parse_args [yieldto return -options $options $res] {

3This is the approach taken by nsf::proc, part of the Next Scripting Framework

-foo {-default xyzzy}

-count {-required}

}

... generate next value

} res options

}

}]

5 Future Work

• It would be helpful to expose a C API.

• Support positional parameters interspersed with (or preceding) named parameters.

• Some proper documentation is probably a good idea.

Appendix A: Parse Signature Format

The signature format argument to parse args is a dictionary whose keys define the valid
parameters and whose values define the properties of that parameter. If the parameter name
begins with a “-” character it is treated as a named parameter, otherwise it is a positional
parameter that must appear after all named parameters.

The following settings are valid in the parameter properties:

• -default default value

If the parameter is not supplied it takes the value default value.

• -required

Flags the parameter as being required – if no value was supplied an error is thrown. If
neither -required nor -default are specified and no value is supplied by the caller,
the corresponding output variable is not set. The script can then use info exists

param name to distinguish this case from any possible value that could be passed by
the caller.

• -validate function

The command prefix function has the supplied value appended and the resulting com-
mand is executed. If the result is an error or a boolean false value then the value is
rejected and an error is thrown.

• -name output name

Normally the parameter key supplies the name for the output parameter (sans the

leading “-” for named parameters). If -name is specified then output name is used
instead.

• -boolean

Flags the parameter as being a boolean toggle. If the parameter is supplied then the
output parameter will contain a boolean true value, otherwise false.

• -args

Ordinary named parameters consume the following argument as the value to assign to
the output parameter. -args specifies how many arguments to consume instead (must
be greater than 1).

• -multi

Flags this parameter as one of the choices for a mode selection type parameter – should
be used together with -name. All -multi parameters that share the same -name are
treated as flags that supply the value stored in the output parameter (sans the leading
“-”). If conflicting parameters are supplied the last one sets the value. Specifying
-required on any of the linked -multi parameters means that at least one of the
choices must be set by the caller. Specifying -default on any of the linked parameters
establishes the default value if none is supplied.

• -enum valid values

Enforces that the supplied value exactly matches one of the elements in the list
valid values.

• -# comment

Ignores comment, allowing comments to be inserted into the signature definition.

Appendix B: Examples That Mimic Core Commands

These examples show what the argument parsing for selected core Tcl commands would look
like if implemented in a script using parse args:

proc lsort args {

parse_args $args {

-ascii {-name compare_as -multi -default ascii}

-dictionary {-name compare_as -multi}

-integer {-name compare_as -multi}

-real {-name compare_as -multi}

-command {}

-increasing {-name order -multi -default increasing}

-decreasing {-name order -multi}

-indices {-boolean}

-index {}

-stride {-default 1}

-nocase {-boolean}

-unique {-boolean}

list {-required}

}

if {![info exists command]} {

switch -- $compare_as {

ascii {

set command {string compare}

if {$nocase} {

lappend command -nocase

}

}

dictionary {

...

}

integer - real {

set command tcl::mathop::-

}

}

}

}

proc lsearch args {

parse_args $args {

-exact {-name matchtype -multi}

-glob {-name matchtype -multi -default glob}

-regexp {-name matchtype -multi}

-sorted {-boolean}

-all {-boolean}

-inline {-boolean}

-not {-boolean}

-start {-default 0}

-ascii {-name compare_as -multi -default ascii}

-dictionary {-name compare_as -multi}

-integer {-name compare_as -multi}

-real {-name compare_as -multi}

-nocase {-boolean}

-decreasing {-name order -multi}

-increasing {-name order -multi -default increasing}

-bisect {-boolean}

-index {}

-subindices {-boolean}

}

if {$sorted && $matchtype in {glob regexp}} {

error "-sorted is mutually exclusive with -glob and -regexp"

}

}

proc entry {widget args} {

parse_args $args {

-disabledbackground {-default {}}

-disabledforeground {-default {}}

-invalidcommand {-default {}}

-readonlybackground {-default {}}

-show {}

-state {-default normal -enum {

normal disabled readonly

}}

-validate {-default none -enum {

none focus focusin focusout key all

}}

-validatecommand {-default {}}

-width {-default 0}

-textvariable {}

}

}

	Script-Defined Commands are Second Class Citizens
	Script-Defined Commands are Second Class Citizens
	Conventions Established by the Core
	Performance
	Beyond Parsing proc Arguments
	Future Work

