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1 Introduction
Once  in  a  great  while,  the  programmer  has  need  for 
floating  point  arithmetic  in  greater  precision  than  the 
hardware  provides.  This  capability  is  usually  not 
performance critical, since most performance critical code 
deals  with  measured  quantities  in  the  physical  world, 
where it is hard to imagine a measurement precision that 
exceeds  the  sixteen  or  so  decimal  digits  provided  by 
standard  IEEE-754  double  precision  arithmetic.  Instead, 
the  high-precision  arithmetic  is  used  to  guard  against 
catastrophic  loss  of  significance,  where  a  difference  is 
computed  between  floating  point  numbers  of  nearly  the 
same  magnitude,  or  against  accumulation  of  roundoff 
errors. In the course of developing numeric software, the 
analyst will usually rectify these problems as a matter of 
course, but the need arises to verify that nothing has been 
missed,  and  to  compute  intermediate  constants  (such  as 
coefficients of power series) so that  they are guaranteed 
accurate.

Unfortunately, it is often extremely difficult to determine 
in  advance  what  precision  will  be  required  for  these 
calculations.  Using interval  arithmetic  can often give an 
indication of what precision results are known to, and then 
the  analyst  can  determine  the  intermediate  precision 
through trial and error, but this task is laborious. Moreover, 
the required precision may depend on the input data.

This paper presents a library that avoids these issues by 
representing numbers as algorithms, rather than as streams 
of digits. Each number's representation is a TclOO object 
that  has  methods  to  compute  the  number's  value  by 
successive approximation, keeping the number bounded by 
an  ever-decreasing  interval  at  each  step.  The  library 
provides  algorithms  for  arithmetic,  for  real  powers  and 
roots, and for the elementary functions.

The chief drawback to this approach is that not all numbers 
are computable! (The set of reals is not countable, while 
the set of computable numbers is.) Moreover, equality of 
two  numbers  in  this  scheme  is  undecidable.  Deciding 
when two numbers, both specified by algorithms, are equal 
is equivalent to the Halting Problem. Nevertheless, despite 

these limitations, arithmetic on the computable numbers is 
useful  for  the  sort  of  applications  (software  testing  and 
high-precision development of constants) envisioned here.

2 Motivation
Floating-point  arithmetic  has  acquired  a  certain,  mostly 
deserved  reputation  for  being  fraught  with  peril.  Even 
fairly simple calculations sometimes fail quite badly if its 
vagaries  are  not  considered.  For  instance,  consider  the 
high-school  solution  to  the  quadratic  formula 

a x2
+b x+c=0 :

x=
−b±√b2

−4a c
2a

.

Let's attempt to do a naïve implementation of the quadratic 
formula in floating point, and examine the result.

proc quad1 {a b c} {
    set d [expr {sqrt($b*$b - 4.*$a*$c)}]
    set r0 [expr {(-$b - $d) / (2. * $a)}]
    set r1 [expr {(-$b + $d) / (2. * $a)}]
    return [list $r0 $r1]
}

Choose the coefficients  a, b , c  to have the two roots 

x=−200, x=7.5⋅10−15 , performing the  calculations  in 
floating point. So far, all calculations are close to machine 
accuracy:

a=1,b=200.0, c=−1.5⋅10−12

But what happens when we run the high-school quadratic 
formula  on  this  set  of  parameters?  The  large  root 

x=−200 comes out to machine precision, but the small 
root is precise to zero significant figures. Even the leading 
digit is wrong.

% puts [quad1 1. 200. -1.5e-12]
-200.0 1.4210854715202004e-14

What's  gone wrong here? If we look at  the intermediate 

result d=√b2
−4 ac , we'll see that it prints out as 

200.00000000000003

This  value is  so close to  200.0 that  subtracting the two 



gives a value that is off by a large factor. Instead of the 

correct value of 1.5⋅10−14 , what prints is:

2.8421709430404007e-14

nearly  a  factor  of  two too  high.  Subtracting  two nearly 
equal  quantities  has  caused  a  catastrophic  loss  of 
significance.

An experienced numerical analyst will, possibly with some 
effort, be able to rework the procedure to avoid ever losing 
significance in the numerator of the result, by observing 
that

−b+√(b2
−4 ac)

2a
=

2c

−b−√b2
−4 a c

,

and rewriting the procedure:

proc quad2 {a b c} {
    set d [expr {sqrt($b*$b - 4.*$a*$c)}]
    if {$b < 0} {

set s [expr {-$b + $d}]
    } else {

set s [expr {-$b - $d}]
    }
    set r0 [expr {$s / (2. * $a)}]
    set r1 [expr {(2. * $c) / $s}]
    return [list $r0 $r1]
}

The new procedure is immune to this particular pathology:

% puts [quad2 1. 200. -1.5e-12]
-200.0 7.5e-15

But  even  the  experienced  analyst  will  have  a  greater 
challenge  when  asked  how  to  address  the  loss  of 

significance  when  b2
≈4 a c. Fortunately,  this  case 

causes “only” the loss of about half the significant digits of 
the result. For instance, consider:

% puts [quad1 94906265.625 \
           -189812534. 94906268.375]
1.0000000144879793 1.0000000144879793
% puts [quad2 94906265.625 \
            -189812534. 94906268.375]
1.0000000144879793 1.000000014487979

(The  correct  answers,  to  IEEE  precision,  are  1.0  and 
1.0000000289759583.) [Kahan 2004] 

At this point, the analyst will mutter wisely about things 
like “internal quad precision for intermediate results,” and 
“Kahan's summation algorithm,” and offer to start a project 
to assess sensitivity of the results to the initial parameters, 
and you realize that you are going to be out a lot of money 
letting him pursue this – and all for what started out a four-

line procedure. 

Of course, most floating-point calculations never trip over 
troubles  quite  this  bad  –  these  results  are  somewhat 
contrived. Nevertheless, we sometimes want to know that 
we  have  the  exact  answer,  without  worrying  about 
intermediate precision. We may be doing software testing, 
and  attempting to verify that our floating calculations have 
not gone far astray in test cases. Or we may be developing 
a numerical library, in which we need some constant like 

ln (√2π ) and want it to full machine precision so that 

we can promise results to some level of accuracy. In these 
cases, performance is generally not an issue. We don't care 
that the machine might take a very long time to get the 
answer. We merely care that the answer is correct.

3 Possible approaches

3.1 Extended precision
The first approach to doing calculations that suggests itself 
is  simply  to  extend  the  precision  of  results  beyond  the 
machine's  native precision. This is  what was historically 

chosen  by  the  Unix  calculator  bc  [Cherry  &  Morris 

1996], and by the mpexpr extension to Tcl [Poindexter ] . 

We can gain a good deal of confidence by repeating our 
calculations  at  several  levels  of  precision,  and  seeing 
where the results appear to stabilize. Unfortunately, while 
this  approach  certainly  improves  on  the  naïve  one,  it 
provides no guarantees. We can never be sure that some 
catastrophe  is  not  lurking,  to  be  revealed  by  the  next 
increase in precision that we will try. Full certainty can be 
provided  only  by  the  same  sort  of  laborious  numerical 
analysis that we are trying to avoid.

3.2 Streams of digits
If an extended, but fixed, precision cannot achieve what 
we are after, the next possibility that suggests itself is to 
have  an  indeterminate  precision.  We  could  represent  a 
number by a procedure, possibly a coroutine, that produces 
a stream of decimal or binary digits. Expressions could be 
represented by procedures that take their arguments, and 
combine  the  streams  using  grade-school  arithmetic  to 
produce sums, differences, products, quotients, and so on.

We do not need to go very far to see where this approach 
fails us. Let's assume that we use streams of decimal digits, 

and attempt to compute the simple expression 3⋅(1 /3) .

The  right-hand  factor  is,  of  course,  0.333…,  and  the 



multplying  by  3  yields  0.999….  When  the  product 
procedure tries to decide what digit to emit to the left of 
the decimal point, it goes into an infinite loop. It has no 
knowledge  that  the  stream  representing  1/3  will  be  an 
endless stream of 3's: perhaps it  will be 0.3333….4. For 
this  reason,  it  must  simply  loop,  consuming  more  and 
more  3's,  trying  to  determine  whether  the  0.999… will 
ever carry and yield a number greater than 1. In fact, this 
problem is fundamental  to  a  computational  structure for 
the real numbers, and is the problem that Alan Turing was 
attempting to address in his most famous paper, the one in 
which the Turing Machine was first introduced. (In order 
to  attack  it,  he  had  to  show  that  the  problem  is 
fundamentally undecidable. If the stream of 3's is produced 
by an arbitrary program, the problem of deciding whether 
something other than a 3 will ever be emitted is equivalent 
to deciding whether the program will ever halt. 

3.3 Continued fractions
The next method that suggested itself was to represent real 
numbers as continued fractions, representing a real number 

x as  a  stream  of  integers  a, b , c ,… (b ,c ,...≥1 )

such that

x = a+ 1

b+
1

c+
1
⋱

.

This representation solves the problem of  0.333...⋅3,

(and  indeed  any  other  problem  in  rational  arithmetic), 
because  the  continued  fraction  representations  of  all 
rational numbers terminate. R. William Gosper expounded 
on continued fractions as an approach to perfect arthmetic 
as  part  of  the  eclectic  but  seminal  paper  HAKMEM 
[Beeler,Gosper  &  Schroppel  1972] ,  and  developed  the 
theory  further  in  an  unpublished (but  widely  circulated) 
paper  that  again  urged  developers  to  consider  the 
approach.  He  presented  a  simple  algorithm for  the  four 
arithmetic operations and for square roots.

Jean Vuillemin expanded on Gosper's work to show how 
fundamental  constants  such  as  e and  π ,  general 
powers and roots, and the elementary functions could all 
be computed with continued fractions [Vuillemin 1988] .

The author of the current paper went as far as to implement 
a  fair  fraction  of  a  Tcl  library  for  continued-fraction 
calculations, before stumbling over the same problem that 
occurs  with  digit  streams:  arithmetic  over  continued 
fractions is not decidable. The problem appears as soon as 

one tries to multiply the square root of 2 by itself. 

√2=1+ 1

2+
1

2+
1
⋱

A program trying to output the integer part  of  (√2)
2

will consume successive approximations to the continued 
fraction:

“ √2=1+1 / z is  between  1  and  2,  so  its  square  is 
between 1 and 4. I don't know the integer part, so I need a 
better approximation.”

“ √2=1+1 /(2+1 /z ) is  between  4/3  and  3/2,  so  its 

square  is  between  16/9=1.777…  and  9/4=2.25.  I  don't 
know the integer part, so I need a better approximation.”

“ √2=1+1 /(2+1 /(2+1 /z)) is between 7/5 and 10/7, so 

its square is between 49/25=1.96 and 100/49 = 2.0408…. I 
don't  know  the  integer  part,  so  I  need  a  better 
approximation.”

We  have  once  again  hit  the  Halting  Problem,  just  as 
before.  As  soon  as  the  algorithm  that  is  producing 

a, b , c ,.. . outputs an endless string of 2's, the integer 
part  of the product remains undetermined. As soon as it 
outputs anything else, the integer part is known.

Gosper was clearly aware of  the problem even in 1972, 
and suggested solving it by allowing non-positive values 
for  b, c , d , ....  This change essentially would allow a 
stream to  retract  an  earlier  result  and  replace  it  with  a 
different  one.  He  never  developed  an  effective 
computational procedure based on this scheme. Eventually, 
David  Lester  did  reduce  the  theory  to  an  effective 
procedure,  but  his  algorithms  were  fairly  complex, 
requiring that up to seven terms of a continued fraction be 
consumed before one result term could be produced, and 
requiring fairly extensive auxiliary tables [Lester 2001] .

3.4 Möbius transformations
Before attempting to impement Lester's algorithms in a Tcl 
continued  fraction  library,  the  author  stumbled  upon 
another representation for the real numbers: sequences of 
Möbius  transformations  (also  called  linear  fractional 
transformations) [Potts 1998] 

 y= a x+b
c x+d

.

These  transformations  have  properties  that  make  them 



useful computationally.

First,  if  x≥0, and  b /d ≤ a/c , then  y lies  in 

the  closed  interval  [b/d ..a /c ] . If  instead 

b /d ≥ a/c , then  y lies  outside the  open  interval 
(a /c ..b /d) . Every  Möbius  transformation  therefore 

represents an interval of rational numbers. If  a=c and 

b=d ,  then  the  matrix  represents  a  single  rational 
number, and the value of x is immaterial.

Second,  Möbius  transformations  are  composable.  If 
x=(a y+b)/(c y+d ) and y=(e z+ f )/(g z+h) ,

then x=
(a e+b g)z+(a f +b h)
(c e+d g)z+(c f+d h)

.

This  formula  is  itself  a  Möbius  transformation.  The 
mathematical  reader  will  recognize  that  it  is  simply  a 
matrix product. It will therefore be convenient to represent 
Möbius transformations as matrices, and write:

[a b
c d ]⋅ [ e f

g h] = [a e+b g a f +b h
c e+d g c f+d h] .

It  is  also  useful  to  consider  matrices  that  are  scalar 
multiples of one another as being equivalent, since 

pa x+ pb
pc x+ pd

=
ax+b
c x+d

for any p≠0.

Third,  continued  fractions  map  gracefully  into  Möbius 
transformations. The number represented by

x = a+ 1

b+
1

c+
1
⋱

is  the  same  number  as  that  represented  by  the  Möbius 
transformation product

[a 1
1 0]⋅ [b 1

1 0 ]⋅ [c 1
1 0]⋯.

This  correspondence  immediately  implies  that  all  of 
Gosper's  and  Vuillemin's  algorithms  for  continued 
fractions  can  be  brought  forward  into  the  algebra  of 
Möbius transformations.

Finally, there is a special form of Möbius transformation 
that  offers  an  effective  calculation  procedure.  It  works 
around the problem of decidability by using overlapping 
intervals to represent numbers. Any number near the edge 
of an interval has an alternative representation that starts 

with another interval, so that it only finite information is 
ever  required  to  emit  the  next  transformation.  A 
transformation,  once emitted,  is  never retracted,  and the 
interval represented by the product of the transformations 
decreases monotonically in width. In this way, every step 
makes progress.

4 Representing real 
numbers

4.1 Fundamental entities
The implementation of exact  real  arithmetic begins with 
three fundamental  objects:  2-vectors,   2×2 matrices,  and 
2×2×2  third-order  tensors,  where  all  components  are 
integers. A vector is simply a list of integers, a matrix is a 
list  of  its  two columns, and a tensor is  a list  of its  two 
matrices.

A  vector  {a b} represents  the  rational  number 

a /b. We assume that a and b are not both zero. 
( a≠0,b=0 is  permissible,  and  represents  an  infinite 
quantity, of unknown sign.)  By convention, we represent 
fractions in lowest terms, and cast out the greatest common 
divisor when necessary.)

A matrix

[a b
c d ]

represents  the  Möbius  transformation
x=(a y+b)/(c y+d ). It  also,  as  we  have  seen, 

represents  the  interval  [b/d ..a /c ] . Once  again, 

multiplication by a scalar does not change what a matrix 
represents, and we cast out any prime factor common to all 
four elements. The two elements in a column cannot both 
be zero, and the matrix cannot be singular. (Equivalently, 
the second column cannot be a scalar multiple of the first, 
or the endpoints of an interval  cannot both be the same 
point.)

A tensor,

[a b
e f | c d

g h ]
represents  a  bilinear  fractional  transformation  of  two 
variables:

z = a x y+b x+c y+d
e x y+ f x+g y+h

.



Like vectors and matrices, tensors do not change what they 
represent  when  multiplied  by  a  scalar,  and  are 
conventionally represented in lowest terms.

There are tensors that represent all four of the arithmetic 
operations:

T+=[0 1
0 0 | 1 0

0 1] ,
T -=[0 1

0 0 | −1 0
0 1] ,

T×=[1 0
0 0 | 0 0

0 1] ,
T ÷=[0 1

0 0 | 0 0
1 0] .

If  v is  a  vector,  M and  N are  matrices,  and 
Ψ is  a tensor,  then the products  M⋅v and M⋅N

are  defined  in  the  conventional  way.   The product  of  a 
matrix and a tensor is

[ p q
r s ] ⋅ [a b

e f | c d
g h ]

= [ pa+qe pb+q f
r a+s e r b+s f | pc+qg pd+qh

rc+sg rd+sh ] ,
that  is,  it  is  the  result  of  matrix  multiplying  the  matrix 
independently  with  the  two  matrices  that  make  up  the 
tensor.

Tensors may be multiplied on the right by vectors in two 

different ways, Ψ⋅L v and Ψ⋅RV . These correspond to 

replacing  x or y , respectively,  with  p /q in  the 
formula

z =
a x y+b x+c y+d
e x y+ f x+g y+h

.

[a b
e f | c d

g h ]⋅L [ pq ] = [a p+c q b p+d q
e p+g q f p+hq ]

[a b
e f | c d

g h ]⋅R [ pq ] = [a p+b q c p+dq
e p+ f q g p+h q] .

Left  and  right  multiplication  of  a  tensor  by  a  matrix  is 
defined so as to satisfy the associative laws

(Ψ⋅L M)⋅L v = Ψ⋅L(M⋅v) , and
(Ψ⋅R M )⋅R v = Ψ⋅R(M⋅v) .

Matrix transposition is defined in  the usual  way.  Tensor 
transposition is defined as swapping columns.

[a b
c d ]

T

= [a c
b d ] .

[a b
e f | c d

g h ]
T

=[a c
e g | b d

f h ] .
Matrix  inversion  is  somewhat  unusual.  Since  a  scalar 
multiple a M of  a matrix M has the same meaning 
as  the  matrix  itself,  there  is  no  step  of  dividing  by  the 
determinant, which in turn means that the determinant may 
be zero,  and  inversion is  still  safe.  We simply have  the 
pseudo-inverse

[a b
c d ]

−1

≃ [ d −c
−b a ] .

All of these operations are simply defined as functions that 
operate on Tcl lists.

4.2 Expression trees
The next layer of the software wraps vectors, tensors and 
matrices  up  in  expression  trees  that  define  how 
mathematical  expresssions  are  to  be  evaluated.  The 

fundamental  base  class,  Expression,  has  three 

subclasses,  V,  M,  and  T,  which  encapsulate  vectors, 

matrices, and tensors respectively.

The V class encapsulates a vector of two integers, n and d, 

and represents the rational number n /d.

The  M class  encapsulates  a  matrix  M,  and represents  the 

result  of  applying  that  matrix  to  the  result  of  another 
expression. The other expression may be known at compile 

time (the Mstrict subclass handles this case), or may be 

constructed lazily on demand. If it is constructed lazily, the 
matrix is cached once constructed, so that lazy evaluation 
happens only once.

The  T class  encapsulates  a  tensor Ψ, and represents  the 

result  of  applying  Ψ  to  two  other  expressions: 

(Ψ ⋅L e1)⋅R e2 . Once  again,  the  expressions  may  be 

known at compile time (Tstrict), or may be constructed 

lazily  on  demand.  Lazily-constructed  expressions  are 
cached.

Since  the  lazy  evaluation,  and  the  actual  numeric 
calculation, results in a great number of ephemeral objects 
being passed around, the Expression base class is reference 

counted.  The  caller  claims  a  reference  by  calling  [$a 

ref] on some expression  $a, and releases the reference 

with  [$a unref]. Objects are constructed with a zero 

reference  count,  and  deleted  when  an  unref  operation 



results in a zero reference count again.

4.3 Expressions
The command at the center of the exact arithmetic system 

is  math::exact::exactexpr.   This  command  is 

similar  to the Tcl  expr command, and accepts a  single 

argument that is the expression to be evaluated. The result, 

instead of being the value, is an Expression object that 

represents the value. It is returned with a reference count 
of 1.

The  exactexpr command is built from a conventional 

expression  grammar  using  an  Aycock-Early-Horspool 

parser  generator  (the  grammar::aycock module  in 

Tcllib). The expressions may include:

• integers
• the fundamental constants pi and e
• references to Tcl variables, which are expected to 

contain Expression object instances
• mathematical functions such as sqrt and sin
• parentheses
• the four arithmetic operations +, -, *, /
• the exponentiation operation **

Most of these are translated in a straightforward fashion. 
(There  are  compile-time optimizations that  apply,  which 
are not discussed here, mostly having to do with constant 

folding.) An integer x is represented by the vector [x1 ].
Unary negation is represented by the matrix  [−1 0

0 1]
applied to its argument. The four arithmetic operators, as 
we  have  seen  above,  correspond  to  tensors,  which  are 
applied to their left and right operands.

4.4 Infinite expression trees
Exponentiation and the mathematical functions are rather 
more complicated, and generally involve lazy evaluation. 
The  mathematical  algorithms  that  construct  the  lazy 
objects are somewhat complex, and the interested reader is 
referred to the source code (which, in turn, references the 
relevant papers) for details. As a simple example, though, 
let's work through calculating a square root.

If a program requests [exactexpr {sqrt(2)}], that 

is translated into an instance of the  SqrtWorker class 

(which inherits from  T). This class's tensor is always the 

constant:

Ψ √ = [1 2
0 1 | 1 0

2 1] ,
representing the function:

x y+2 x+ y
x+2 y+1

.

The left operand, x, is the quantity whose square root is to 
be  found,  and  the  right  operand,  y, is  a  copy  of  the 

Sqrtworker object.  The  expression  (which  is  lazily 

constructed) is an infinite sequence

Ψ √⋅L x⋅RΨ√⋅L x⋅R Ψ √⋅L x⋅R⋯

Let's fold x=2 into the tensor, since we are computing 

sqrt(2). The function that will be iterated becomes

3 y+4
2 y+3

, or the matrix [3 4
2 3 ] .

The expression becomes the infinite product:

[3 4
2 3 ]⋅[3 4

2 3 ]⋅[3 4
2 3 ]⋅⋯.

Let's verify for ourselves that this is doing what we want. 
After  the  first  iteration,  the  product  is  the  matrix  itself, 

asserting that 4 /3≤√2≤3 /2. (This is indeed the case.)

If we need more information than this, we lazily request 
another layer of the expression tree, and compose the two 
matrices, giving us the matrix

[17 24
12 17 ] .

This asserts that  24 /17≤√2≤17 /12. Once again, this 
is indeed the case, and it has refined the estimate so that 
we know that  the leading decimal digits are 1.41. If we 
need more digits  than this,  we turn the crank one more 
time, obtaining the matrix

[99 140
70 99 ] .

and another decimal digit, making the leading digits 1.414. 
Further  iterations  refine  it  to  1.41421,  1.414213, 
1.41421356, adding a digit or two of precision with each 
level of expression evaluated.

5 Evaluating real numbers
With  the  representation  of  real  numbers  as  (possibly 
infinite) trees of tensor and matrix products, with vectors 
at  the leaves,  we can now begin to consider  how to go 



about evaluating real numbers and producing results in a 
usable form, such as decimal fractions or rational numbers 
together with statements of precision. The library does this 
by converting numbers to streams of simple matrices, with 
only a few constant matrices allowed in the streams. These 
are  similar  to  streams  of  digits  in  conventional 
representation,  except  that  digits  can  take  on  negative 
values as well as positive ones. The result is a redundant 
representation, in which any number can be represented in 
multiple ways. The redundancy means that  at  any given 
digit position, a decision can be made without needing an 
infinite amount of precision. Problems such as the infinite 

loop computing √2×√2 no longer appear.

5.1 Sign-and-magnitude 
representation

The assertion that  a /c≥(a x+b) /(c x+d)≥b /d , which 

we have used in asserting that matrices represent intervals, 
fails if x is negative. The library handles this by exporting 
up a 'sign matrix' as the first element in the stream. The 
sign matrix is a redundant division of the number line into 
quadrants:

+ : x≥0 0: |x|≤1
−: x≤0 ∞ : |x|≥1.

For each of these quadrants, there is an associated matrix: 

S +=[1 0
0 1 ] S0=[1 −1

1 1 ]
S−=[ 0 1

−1 0] S∞=[ 1 1
−1 1]

so  that  if  x=S y is  in  a  given  quadrant,  then  y is 
positive  (when  vectors  are  given  their  interpretation  as 
rational  numbers).  Each  of  the  subclasses  of 

Expression supports  a  method,  getSignAnd-

Magnitude,  that  returns  a  pair  consisting  of  an 

appropriate  sign matrix  S and an expression  y such that 
x=S y and  y is  nonnegative.  The  method  absorbs 

information from subexpressions as necessary to determine 
which sign matrix to use.

5.2 Digit streams
After the sign and magnitude extraction, the nonnegative 
numbers  that  remain  are  broken  down into  products  of 
'digit matrices'. There are three of these, which divide the 
non-negative  half  of  the  number  line  into  overlapping 
pieces:

−1: 0≤x≤1
0 : 1 /3≤x≤3
1: 1≤x .

 

The corresponding matrices are:

D−1 = [1 0
1 2 ] D0 = [3 1

1 3] D1 = [2 1
0 1]

Numbers  usually  begin with a  series  of  D−1 or D1

matrices  that  fix  the order  of  magnitude. A number that 

begins  with  D1 is  at  least  1;  one  that  begins  with 

D1 D1 is at least 3; and in general if a number begins 

with  k D1  matrices,  its  value  is  at  least  2k
−1.

Similarly, a number beginning with k D−1 matrices has 

a value that is at most 1/ (2k
−1) .

After  the  leading  string  of  repeated  D−1 or D1

matrices,  the rest  of  the number can be thought of  as  a 
significand. Each digit cuts the size of the interval in which 
the  number  can  appear  roughly  in  half.  The number  of 
digit  matrices  needed to  represent  a  quantity  x to  some 
desired degree of precision can therefore be estimated as 

|log2 x|+b, where  b is  the  number  of  bits  of 

significance that are desired.

Just as each of the subclasses of  Expression supports 

getSignAndMagnitude,  each  subclass  supports  a 

method, getLeadingDigitAndRest, that extracts the 

leading digit matrix D, returning a pair consisting of D and 
an  expression  x=D y ,  with  y still  nonnegative.  It 
absorbs information from subexpressions as necessary to 
compute the digit.

5.3 Digit exchange
Both  of  the  preceding  two  sections  have  spoken  of 
'absorbing  information  from  subexpressions',  but  have 
glossed over what absorption of the information means. In 
both cases,  what 'absorbing information'  means is  that  a 
digit  matrix  will  be extracted from a subexpression and 
composed  into  the  current  matrix  or  tensor.  (This,  of 
course,  may in turn  cause  the  subexpression to  need  to 
absorb  information from its  subexpressions,  and  so  on.) 
Denoting  the  value  of  the  current  expression  by  x,  the 
process  of  exchanging  digits  with  subexpressions 
continues until for some digit matrix D, we can prove that 

D−1 x represents a non-negative number for any value 
of the subexpressions. At that point, it is safe to return the 

digit  D and the result of left-multiplying D−1 with the 



current  matrix  or  tensor.  Since  the  size  of  the  interval 
represented by a subexpression roughly halves with each 
digit emitted, and since the ranges of intervals represented 
by  the  digit  matrices  overlap,  this  is  an  effective 
procedure: it never requires an unbounded amount of work 
to extract the next digit matrix.

5.4 Formatting for printing
The  asPrint method  is  responsible  for  formatting  an 

exact  real  number  for  display.  This  method  accepts  the 
number  of  digit  matrices  to  process.  It  composes  those 
matrices, resulting in a representation of the number as a 
rational  interval.  It  then  formats  the  number  in  floating 
point  “E  format”  (significand  and  power  of  10), 
terminating the significand at the point where the interval 
becomes wider than 1 unit in the least significant place. 
The  true  value  of  the  real  number  as  printed  is  always 
within ±1  unit in the least significant digit.

6 Examples
Let's run through a few examples to see how the library 
works in a few practical cases. First, let's try to solve the 
quadratic  formula  over  exact  real  numbers.  We  won't 
worry about the roundoff errors from the first section, and 
simply let  the machinery request  enough precision from 
the intermediate results to give the requested accuracy of 
the final answer.

We'll write a procedure analogous to quad1 that operates 

on exact reals:

proc exactquad {a b c} {
    set d [[exactexpr {
                sqrt($b*$b – 4*$a*$c)
            }] ref]
    set r0 [[exactexpr {
                 (-$b - $d) / (2 * $a)
             }] ref]
    set r1 [[exactexpr {
                 (-$b + $d) / (2 * $a)
             }] ref]
    $d unref
    return [list $r0 $r1]
}

The structure is identical to  quad1, except for reference 

count management. Calling it also requires only changes to 
notation and to reference count management.

set a [[exactexpr 1] ref]
set b [[exactexpr 200] ref]
set c [[exactexpr {
            (-3/2) * 10**-12
        }] ref]

lassign [exactquad $a $b $c] r0 r1
$a unref; $b unref; $c unref
puts [list [$r0 asFloat 70] \
           [$r1 asFloat 110]]
$r0 unref; $r1 unref

As we might hope, the results are to full precision, with no 
worrying  about  the  near-cancellation  of  significance  in 
subtraction:

-2.000000000000000075e2 
7.499999999999999719e-15

Similarly, when we attempt the arguments that gave near-
cancellation  under  the  square  root  sign,  there  is  no 
problem. The near-multiple root is recovered to IEEE-754 
double precision perfectly well:

set a [[exactexpr 94906265625/1000] ref]
set b [[exactexpr -189812534] ref]
set c [[exactexpr 94906268375/1000] ref]
# … other code as before …
1.0000000000000000e0 1.0000000289759583e0

And we can do other  high-precision calculations just  as 
nicely. For instance, we can easily disprove the old canard 

that eπ√163 is an integer:

% set r [[exactexpr {exp(pi()*sqrt(163))}] 
ref]
% puts [$r asPrint 162]
2.6253741264076874399999999999925e17
% $r unref

Or we can solve a problem due to W.Kahan: [Kahan 2005] 

Let  x0=4,

x1=4.25, xk+1=108−
815−1500 /xk−1

xk−2

.

What is x100? When calculated in floating point, to any 

reasonable  precision,  straightforward  coding  of  this 
question gives the answer 100.0. But the correct answer is 
very close to 5. 

The results of the first 25 iterations are shown in Table 1. 
The first eight or nine iterations are fairly close between 
standard IEEE-754 double precision and exact arithmetic. 
By the eleventh, however, the floating point arithmetic is 
clearly trending  in  the  wrong direction,  and  in  the  next 
couple of iterations, it falls apart altogether. 



Table 1. Kahan's problem: IEEE-754 vs. exact 
arithmetic

Iteration IEEE-754 Exact

 1   4.47059   4.47059

 2   4.64474   4.64474

 3   4.77054   4.77054

 4   4.85570   4.85570

 5   4.91085   4.91085

 6   4.94554   4.94554

 7   4.96696   4.96696

 8   4.98004   4.98004

 9   4.98791   4.98798

10   4.99136   4.99277

11   4.96746   4.99566

12   4.42969   4.99739

13  -7.81724   4.99843

14 168.93917   4.99906

15 102.03996   4.99944

16 100.09995   4.99966

17 100.00499   4.99980

18 100.00025   4.99988

19 100.00001   4.99993

20 100.00000   4.99996

21 100.00000   4.99997

22 100.00000   4.99998

23 100.00000   4.99999

24 100.00000   4.99999

25 100.00000   5.00000

7 Limitations
Chief  among  the  obvious  limitations  of  the 

math::exact package is performance: it is atrociously 

slow and consumes a great deal of memory. Performance 
is rather beside the point: it is built to give exact results 
always,  and  not  highly  optimized.  There  are  other 
limitations  that  are  more  subtle  but  likely  to  be  more 
important in practice.

7.1 Floating point
The reader may have noticed that the expression grammar 
does not support floating point notation. The problem with 
floating  point  notation  is  that,  in  a  world  of  exact 
arithmetic, it is ambiguous. Consider the simple constant 
0.3333333333333333.  What  does  this  constant  mean? 
There are three rational numbers that make roughly equal 
sense, but are not equal.

• The rational number 
1
3

. This constant is the 

rational number with the smallest denominator 
that will yield the given constant in IEEE-754 
floating point. (To a human eye, this is probably 
the most reasonable answer.)

• The rational number 
3333333333333333
10000000000000000

.

This constant is the obvious interpretation of the 
floating point number as printed.

• The rational number 
6004799503160661

18014398509481984
.

This is the exact value of the IEEE-754 floating 
point constant that prints out as 
0.3333333333333333.

It seems better to let the programmer write one of these 
explicitly, rather than trying to divine which interpretation 
is intended in any given case.

7.2 Reference counting
Using reference counts at script level is always unweildy, 
and invites both premature object destruction and memory 
leaks.  Nevertheless,  exact  reals  are  heavyweight  objects 
that we do not want to have to copy when we copy one 
variable to another, pass a value to a procedure, or have a 
procedure return a value. Passing objects by reference (i.e., 
by command name) seems like an obvious approach.

A possible workaround is to accept “fragile  references.” 
The reference to the object that represents a number would 
be  carried  as  the  internal  representation  of  a  Tcl_Obj. 
Copying  a  variable  holding  one  of  these  objects  would 
result in incrementing the reference count in the Tcl_Obj. 
When the Tcl_Obj is  deleted,  so is  the underlying exact 
value.

As the name suggests, these references are fragile. If the 
object  name  is  interpolated  into  a  string,  used  as  a 
singleton list, used as a hash key, or otherwise used in a 
way that causes its internal representation to shimmer, the 
reference to the underlying exact number will be lost and it 



will  be  destroyed  prematurely.  This  behaviour  leads  to 
subtle bugs that are often difficult to locate.

Nevertheless,  users  of  Tcl  interfaces  to  managed  code 
systems  such  as  Java,  COM and  .NET face  the  fragile 
reference  problem  whenever  they  deal  with  a  managed 
object. It appears that they contrive to lead useful lives in 
spite of the fragility. For this reason, a future version of 

math::exact may  offer  fragile  references  with 

automatic object reclamation as an option.

7.3 Comparison
Similarly,  the  math::exact package  does  not  offer 

comparison  operators  ==,  !=,  <,  <=,  >,  and  >= in  its 

expressions. The reason is that they are not decidable! In 
order  to  decide  whether  0.999… < 1,  the  library  might 
have to do an unbounded amount of work trying ever more 
precise values, without ever arriving at an answer.

The  solution  to  this  problem  is  fairly  well  understood: 
offer fuzzy comparison operators. For any rational number 

ϵ>0, we  can  define  a  comparison  operator 

a≪ϵ b :={
1, if a < b−ϵ,

either 0 or 1, if b−ϵ≤ a ≤ b+ϵ
0, if a > b+ϵ.

and  define  similar  operators  ≫ϵ , ≈epsilon , and≠ϵ .

These operators require only finite precision, because they 
are allowed to give any consistent  answer for  the given 
tolerance ϵ .  The correct value for ϵ will depend on 
the application, so there must be a way to specify it in the 
expression. Implementing this functionality awaits only the 
specification of an appropriate syntax for it. 

7.4 Safety
It is possible for user code to drive the  math::exact 

package  into  an  infinite  loop  or  a  stack  overflow. 
Typically, this occurs when code requests something that is 
not decidable: For instance, the command:

% set r [exactexpr {sqrt(tan(pi()/4)-1)}]

overflows the stack. The reason is that the sqrt function 

is discontinuous at zero (it does not exist to the left of the 
origin), and the code goes into endless recursion trying to 

decide  whether  the  value  of  the  transcendental  tan 

function is less than or greater than 1. Some anomalies like 
this  one  appear  to  be  fundamentally  unfixable,  and  the 
code would be improved if there were enforced limits on 
stack  depth,  run  time,  and  size  of  intermediate  results, 
possibly  with  optimistic  assumptions  made  for  function 
evaluations close to  the edge of  the functions'  domains. 
These changes are a fairly sizable project, and will likely 
need to be attacked piecemeal.

8 Conclusions
The  math::exact package,  while  clearly  imperfect, 

offers a proof of concept for how exact arithmetic can be 
implemented for Tcl. It already has demonstrated utility for 
performing  high-precision  calculation  of  fundamental 
constants  (such  as  coefficients  for  series  or  continued 
fraction  approximations  to  functions)  and  for  software 
testing (offering exact results so that code can be tested for 
numerical  instability).  The  intention  is  that  the  package 
will appear in the next formal release of Tcllib.
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