
Agent SMITH: 
Evolution of a Test Tool in Tcl/Tk 

John J. Seal 
 

Abstract 

 

This paper describes the evolution of the Story Maker Interface Test Harness (SMITH), a 

test tool developed by Raytheon Technical Services Company (RTSC) for internal use on 

one of its projects.  Development started with a sketch made by a project engineer, and 

proceeded in four incremental stages: First, implement the sketch as proof of concept; 

second, automate the tool using test case files; third, develop a C extension to provide 

hooks into the target system; and fourth, analyze the target system’s response.  These 

stages tracked the changing needs of the project, from development of the interface code 

before real hardware was available, through unit test, and finally into full-scale system 

integration and qualification testing. 

 

Summary 

 

RTSC’s Customized Engineering and Depot Support (CEDS) site in Indianapolis, IN, is 

responsible for developing and maintaining a system known as Story Teller.  Our 

customer asked us to integrate a new system, called Story Maker, to be supplied by a 3
rd
 

party.  We had the Interface Control Document (ICD), but actual hardware would not be 

available for quite some time.  Instead of just coding blindly to the ICD and hoping for a 

successful “big bang” integration, we decided to develop a tool to exercise the interface 

until real hardware was available. 

 

The lead engineer for Story Teller used Microsoft Word (?) to sketch out a notional 

Graphical User Interface (GUI) for that purpose, and marked it up with notes about what 

the various elements should do. [Include sketch.]  For comparison, the final SMITH tool 

is shown beside it. [Include screenshots.]  The final tool matches the initial concept very 

closely, but there are some significant differences, too. 

 

The first phase of development was to simply implement the notional sketch almost 

literally, as a proof of concept.  The ICD defined a simple TCP/IP network protocol that 

was easily implemented.  The initial GUI allowed the user to construct a Maker message, 

send it to Teller, and see the response. The initial concept included fields to describe the 

expected response in narrative form, but we quickly realized that by adding fields to 

describe the expected response in detail, the tool could automatically check the actual 

response for correctness.  Thus, the final tool has three main columns instead of two. 

 

Once the proof of concept was demonstrated, the next step was to add data-entry aids.  

Story Teller has data files that define the valid values for certain fields, and we use those 

same files to create pull-down menus (indicated by downward-pointing triangles) for the 

entry fields.  When the user selects a value for one field, it changes the values available 

for the others; this makes it easy to specify valid and consistent test cases.  The user can 

type directly into the fields to create invalid or inconsistent test cases. 



 

The second phase was to automate the tool by allowing it to read test cases from a file.  

This was important because, at that time, the chief role envisioned for the tool was for 

Unit Test of the interface code.  Just verifying that the code followed the ICD required 

several hundred test cases, and we didn’t want the user to have to enter them manually!  

This added “transport controls” to the GUI so the test case file could be stepped through, 

played automatically, rewound, etc.  Progress and results were shown in a text pane at the 

bottom of the GUI, with discrepancies between actual and expected results highlighted. 

 

The initial implementation required that the user prepare the test case file in a text editor. 

We developed a fairly free format and a parser to support it, but the testers (who are not 

programmers) didn’t like it.  They pointed out the blindingly obvious: There’s already a 

GUI to specify an individual test case, so add a button to append it to the test case file!  In 

that way the testers could use the GUI to build the test case files, experimenting with 

each single test case until they got it just the way they wanted it, then saving it.  Bringing 

the tool to this point took about two weeks of real time.  The tool in this form was used 

extensively by both developers and testers.   

 

Once the new interface was working well, the Teller engineer started using the tool as if 

it were a Maker simulator, that is, to exercise Teller instead of just the interface.  He 

pointed out that valid commands would cause Teller to send certain messages to other 

systems, and other systems to send certain messages to both Teller and Maker.  Would it 

be possible for SMITH to verify Teller’s external response to Maker messages, rather 

than just verifying that they were correctly accepted or rejected? 

 

The third phase of development was adding hooks into Teller so SMITH could verify the 

external message traffic.  This involved having SMITH open a server socket so it could 

receive messages intended for Maker, and registering to receive messages sent and 

received by Teller.  Teller uses a peculiar homegrown Inter-Process Communication 

(IPC) scheme, so it was necessary to write a simple C extension to wrap the key functions 

and export them to Tcl.  Could I have used CriTcl or FFIDL instead?  I don’t know, but 

compiling a C extension to a shared library is simple. 

 

At this point the tool could not only verify that valid messages were accepted, but that 

Teller responded correctly, too.  The user could choose to log external message traffic as 

simple events or hex/ASCII dumps.  The external messages are in Generic Tactical 

Information Message Format (GTIMF).  Teller contains another tool, written in C, that 

can decode them to “human readable” form, but it’s very difficult to use both tools 

together and correlate the results. 

 

The fourth phase was to parse the external GTIMF messages into true human readable 

form.  (The Teller tool parsed the fields and presented them numerically, with no 

interpretation.)  The GTIMF specification documents the meaning of each field, so we 

wrote a parser to display fully-interpreted messages.  The specification of the GTIMF 

protocol in Tcl is very flexible and could be easily extended to other formats.  It took less 

than a week of real time to design, code, test, and document the GTIMF parser! 



 

The final SMITH tool has been very well received and widely used.  System engineers 

use it to explore various “what if?” scenarios.  Developers use it to debug other Teller 

changes being proposed or implemented.  Testers use it to provide repeatable stimulus 

during system integration and qualification tests.



These pictures are UNCLASSIFIED. 

 

 
  

 
 

 

 


