
1 

Enhancing International Space Station (ISS) Mission Control Center 
(MCC) Operations Using Tcl/Tk 

 
 

Brian O�Hagan 
NASA/Johnson Space Center 

brian.ohagan-1@nasa.gov 
 
 

Stephen K. Long, Sr. 
United Space Alliance 

stephen.k.long1@jsc.nasa.gov 
 
 

Abstract 
 
This paper will discuss the use of Tcl/Tk to 
enhance the abilities of flight controllers to 
control the International Space Station (ISS) 
from the Mission Control Center (MCC) at the 
Johnson Space Center. We will discuss why 
existing tools were not able to meet these needs 
as easily as Tcl/Tk. In addition, we will also 
discuss how we interfaced with the existing 
MCC infrastructure to receive ISS telemetry, find 
servers, register services, and send commands 
to ISS. 
 

Extended Abstract 
 
Existing MCC applications were developed for 
use on the X11 platform. These applications 
were typically coded in either C or C++. This 
resulted in the typical development limitations 
where changes where costly, time consuming, 
and difficult to implement. Several of these 
applications make use of Meta data files to allow 
easy definition of telemetry, commands, and 
computations though most only support one of 
these types. The application that came closest 
to supporting all of these functions was part of 
the Common Display Development Team 
(CDDT). Both the crew on ISS and flight 
controllers in the MCC use this application. This 
application is coded in C++ and combines the 
use of telemetry, computations, and commands 
on the same displays using XML data files. The 
main limitation of this application is its 
dependency on the ISS software configuration, 
which limits the delivery of updated data files to 
once or twice a year. Additionally, the 
application has limited graphical capabilities and 
a large backlog of deficiencies. We will discuss 
how we addressed these limitations using 
Tcl/Tk. 

 
The Information Sharing Protocol (ISP) is the 
protocol used to pass telemetry, computations, 
and status data between workstations in the 
MCC. ISP uses the standard client server 
architecture and allows data to be multicast on a 
change-only basis unlike telemetry that 
downlinks all data all the time. ISP is coded in C 
and uses a library of APIs for accessing its 
functionality. We will discuss how we were able 
to interface Tcl/Tk applications with the ISP APIs 
to access telemetry data, register callbacks, 
commands for telemetry events, and provide for 
multiple server connectivity. We will also discuss 
telemetry data management, callback 
management, performance tuning, and 
publishing of data to other ISP clients. 
 
Using the ISP interface, Tcl/Tk applications were 
developed for Caution and Warning 
management, external camera control, 
automated procedure management on ISS, and 
for displaying telemetry. These applications 
were developed in a shorter period of time, with 
fewer defects, and with easier to use graphical 
user interfaces while maintaining the existing 
rigorous Configuration Management and 
certification standards prior to their use during 
ISS operations. 
 
The MCC is a distributed architecture that allows 
for user access throughout the MCC. Since 
users can log into any workstation to support a 
particular activity and ISP Servers run on each 
user�s workstation, the typical approach of 
finding a server by connecting to an IP address 
cannot be used. Instead, the MCC uses Network 
Registration Services (NRS), which defines a list 
of service IDs with the associated workstation 
and port. Applications then use NRS to lookup a 
service ID to determine the workstation and port 



2 

to connect to. We will discuss how Tcl was 
interfaced to NRS to allow for registering service 
IDs and for finding services. This allowed the 
Tcl/Tk application Caution and Warning Status 
Tracker and Analyzer (C&W STAN), to provide 
server functionality using HTTP in a manner like 
web services for ISS Caution and Warning event 
management. 
 
We will also discuss how we were able to 
interface Tcl with the ISS Command Server for 
sending commands to ISS and for receiving 
command related event updates. Like ISP, the 
Command System is coded in C and C++, and 
uses a library of APIs for accessing its 
functionality. Existing MCC applications were 
limited to only sending commands and receiving 
a command accepted or rejected response. 
They did not have the capability to verify a 
command executed properly with end item 
telemetry. This required operator intervention for 
all command verification steps. We plan to 
discuss how the commanding interface allowed 
us to automate routine operations, provide an 
easier interface for camera control, and an 
enhanced scripting capability. We will also 
discuss command data management, callback 
management, and performance tuning.  
 
1. Introduction 
 
This paper will discuss the use of Tcl/Tk to 
enhance the abilities of flight controllers to 
control the International Space Station (ISS) 
from the Mission Control Center (MCC) at the 
Johnson Space Center (JSC). JSC is the lead 
center for ISS operations for the National 
Aeronautics and Space Administration (NASA). 
 
We will discuss the current MCC architecture 
and how we interfaced Tcl to the existing 
infrastructure�s APIs. We will also discuss some 
of the design trade-offs for the extensions we 
created and how they meet our needs. Lastly we 
will discuss how these extensions are used by 
Tcl/Tk applications to solve real world problems 
for ISS flight control. 
 
2. Architecture 
 
The MCC uses a distributed architecture that is 
isolated from the outside world. It also provides 
access to telemetry and commanding from any 
MCC workstation. The MCC uses HP/Compaq 
Alpha workstations running Tru64 UNIX 4.0F. 

The building is subdivided into Flight Control 
Rooms (FCR) and Multi-Purpose Support 
Rooms (MPSR). Typically Space Shuttle 
operations are performed from the White FCR 
and MPSR, ISS operations are performed from 
the Blue FCR and MPSR, and training 
operations are performed from the Red FCR and 
Blue MPSR. Testing and other activities can 
occur in any of these rooms or in one of the 
payload MPSRs. 
 
To prevent users on one activity from interfering 
with another, the MCC uses a rudimentary form 
of Virtual Private Networks (VPN) called activity 
separation. Activity separation divides up the 
MCC resources based on the program, vehicle, 
certification mode, and flight identifier. This 
allows each activity to use recon, software, or 
data streams without interfering with other MCC 
activities. Users are only allowed to select from 
a list of currently valid configurations at login. 
 
To separate data, storage areas are divided into 
certified and uncertified software and subdivided 
based on the flight ID. Only storage areas with 
the specified cert type and flight ID are mounted 
at login. This allows for the testing of new 
versions of software in uncertified activities 
without impacting ongoing operations in another 
certified activity. 
 

 
Figure 1: ISS Telemetry Path 

 
Telemetry data is downlinked from the Shuttle or 
ISS through the Tracking and Data Relay 
Satellite System (TDRSS) to the White Sands 
Ground Station, then passed through the NASA 
Information Network to the Front End 
Processors (FEP) in the MCC. The FEP then 



3 

sends the telemetry data to the MCC LAN in a 
multi-cast data stream with a unique identifier 
based on the program, vehicle, activity type, 
flight identifier, and data type. 
 
Since users can log into any workstation to 
support a particular activity, the servers and data 
streams can change based on the MCC 
activities. Network Registration Services (NRS) 
is used to find the appropriate data streams and 
servers for an activity. MCC applications query 
NRS to find the server providing the data stream 
or service ID matching the activity parameters 
and port for connectivity. 
 
To receive data, a Data Acquisition server is 
started on the user�s workstation. The Data 
Acquisition server uses NRS to find the specified 
service ID based on the activity parameters, 
then connects to the specified data steam. 
Applications can then either connect to the Data 
Acquisition Server (also found via NRS) to 
receive all of the data via a Point-to-Point 
protocol, or connect to an Information Sharing 
Protocol (ISP) Server. The ISP Servers connect 
to the Data Acquisition Server but, ISP clients 
only receive changes in the value or status for 
parameters they have subscribed to. This 
greatly reduces the processing needed by client 
applications. To put this in perspective, ISS has 
95,000 parameters being downlinked in a 
192Kbps data stream which updates all 
parameters every 10 seconds. Some 
parameters update at 1 Hz, but most update at 
0.1 Hz (every 10 seconds). The majority of 
parameters do not change on a regular basis, 
which would result in a lot of wasted processing. 
ISP also allows for applications to publish 

computations for other ISP clients to subscribe 
to. 
 
Since the downlink telemetry depends on the 
ISS S-Band communications system, the 
scheduling of TDRS satellites, and blockage 
between the two, we may have a Loss of Signal 
(LOS) and Acquisition of Signal (AOS) several 
times per orbit (~90 minutes). For each AOS and 
LOS, all parameters toggle from �static� to 
�nominal� status and vice versa. This results in 
bursts of ISP updates at each AOS and LOS. 
 
 
3. NRS 
 
NRS is an application that runs on every MCC 
workstation. It provides a C level API for 
applications to send registration, deregistration, 
and search requests and receive the results. 
Whenever a new service is added to the MCC, 
its ID is sent to the NRS application on each 
MCC workstation. Likewise, when an NRS 
service ID is no longer used, it is removed by 
each NRS application. Since the list of services 
is resident on each workstation, queries return a 
result immediately. 
 
The NRS extension is a complied C package, 
which wraps the NRS APIs to provide a Tcl 
interface. When loaded into a Tcl interpreter, it 
creates the �nrs::nrs� command. This command 
provides sub-commands to access the NRS 
APIs. The extension uses the Tcl object APIs 
and returns query results as Tcl list objects. The 
extension handles cleaning up for itself if the 
nrs::nrs command is deleted. The Tcl event loop 
is not needed for the extension to work.  
 

 
Command Returns 
nrs::nrs  assign_port  service_id     Assigned port number 
nrs::nrs  deregister  service_id     Boolean status 
nrs::nrs  help       Extension help 
nrs::nrs  host_search  host_id     List of Service IDs on Host 
nrs::nrs  port_search  service_id     List of Host IDs and port numbers 
nrs::nrs  register  service_id     Boolean status 
nrs::nrs  register_port  service_id  port    Boolean status 
nrs::nrs  search  service_id     List of Hosts for service 
nrs::nrs  service_search  pattern     List of Host, Service ID, and ports matching pattern 

Table 1: NRS Extension Command Usage Summary 
 



4 

 
Register/Deregister Functions 
 
The NRS extension allows Tcl applications to 
register a NRS Service ID and optionally have 
NRS assign a socket port. The extension also 
allows a Tcl application to deregister a Service 
ID. Using these capabilities, a Tcl application 
can act as a server for MCC services. 
 
Search Functions 
 
The NRS extension also provides the capability 
for Tcl applications to query workstations or 
servers providing a specified Service ID or for 
querying all services available on a particular 
workstation. There is a limited wildcard 
searching capability. 
 
 
4. ISP 
 
Like the NRS extension, the ISP extension 
wraps the C level ISP APIs, to provide an 
interface for Tcl applications. Unlike NRS, ISP 
data updates are event driven and require the 
Tcl event loop to run. When loaded into an 
interpreter, the extension creates the �isp::isp� 
command. This command provides sub-
commands to allow Tcl applications to access 
the ISP extension functions. 
 
Contexts 
 
The ISP extension supports establishing a 
connection to an ISP Server by creating a new 
command for each ISP Server connection (a.k.a. 
context). To establish a connection, the user 
application calls the initialize function with the 
server to connect to, an application identifier. 
The extension returns the new command for that 
context, like Tk does for new widgets. Using this 
new command, the application can then connect 
or disconnect to the ISP Server, enable or 
disable the ISP connection (turn on/off the flow 
of data), subscribe or unsubscribe to telemetry 
parameters, register callback commands for 
value/status updates, get the value or status of a 
parameter, publish or unpublish parameters to 
the ISP Server, set parameter filters in the ISP 
Server, retrieve context status, query the ISP 
Server for status, or register callbacks for ISP 
packets. 
 

Like any other ISP client, the user application 
needs to initialize the connection, so the ISP API 
knows which Server to find via NRS. The 
connect sub-command does the connection to 
the ISP Server. The subscribe sub-command 
tells the ISP Server which parameters to send 
value and status updates for. 
 
Data Updates 
 
ISP sends the current value and status when an 
application first subscribes to a parameter and 
whenever that parameter changes. This blends 
well with the Tcl way, since the event loop can 
be used to handle socket polling. Data updates 
are sent in value, message (string), or status 
packets. The extension then stores all received 
data in C structures using a Tcl hash table with 
the parameter ID as the index.  
 
This presents a bit of a problem. The get sub-
command allows the user application to get the 
current value or status at any time. However the 
application doesn�t know when the value or 
status has changed. Also some telemetry 
parameters can update at 30 Hz. 
 
To ease the burden of constantly checking for 
changes, the extension allows the application to 
register callback commands to evaluate 
whenever the value, sample number, status 
type, status color, status symbol, or validity of a 
parameter changes. This registration allows for 
an unlimited number of callback commands by 
using a Tcl list of lists. ISP sends all value and 
status updates in the first third of a data update 
cycle (roughly 1 second). The approximate time 
between events is 20 microseconds. This allows 
for computations to receive their input values 
then publish a new value within the same data 
update cycle. The downside to this approach is if 
the registered callback commands take too long 
to evaluate, the receive buffer may overflow and 
result in the lost of data. Using this approach, 
there is also a noticeable jump in the CPU 
usage for parameter processing and there could 
be several display updates. 
 
The alternative approach is to store all value and 
status updates until the end of the data update 
cycle, and then evaluate all callback commands. 
This allows for an efficient use of the CPU since 
the data updates are done before computation 
and then display updates are performed at once. 
However this is not as desirable for 



5 

computations since anything published after the 
end of the data update cycle is not sent to other 
clients until the next update cycle. Therefore,  
published parameters are no longer time 
homogenous with their input values. 
 
Both approaches have their advantages and 
disadvantages. For computations, the former 
approach is optimal if the computations are not 
very complex, but for display only applications, 
the latter approach is optimal. Testing has 
shown it would be too complex to allow for a 
combination of both approaches at the 
parameter level. The solution was to set the 
update mode at the context level during the 
initialization phase. Applications that need both 
capabilities could then create two ISP Server 
connections with one set to perform the callback 
evaluations immediately and the other to 
perform the callback evaluations at the end of 
the data cycle. This allowed for the best of both 
worlds without a large increase in complexity. 
 
Data Values 
 
ISP sends all symbols as either a double or as a 
string with length field. Since most Tk widgets 
and the Tcl format command do not like floating 
point values when performing integer 
conversions, this presented a problem. The 
choice was to either force the user callback 
command to do double to integer conversion or 
include it in the extension. The other problem is 
that unless a parameter is looked up in the 
recon to determine its true type, it would be 
impossible to know which type to convert to. To 
solve this problem, the ISP extension converts 
any value without a fractional component to 
either an integer or long integer, if it is within the 
value range for those types. Ideally it would be 
nice if the format command could do this for us. 
The converted value or string is then converted 
into a Tcl object and stored in the structure. 
 
The second issue was with ISP time stamps. An 
associated time stamp accompanies each value 
or status update. This time has a dual use of 
either Mission Elapsed Time (MET) for the 
Shuttle or the time since the beginning of the 
year. This time is in floating point hours. In order 
to reduce the processing needed to view time 
fields, the ISP extension converts the time into 
seconds such that it can be passed to the clock 

command without further processing. Unlike the 
value updates, this is only performed when the 
get command is used. 
 
Other Features 
 
To reduce the processing needed by the Tcl 
applications and to increase the extension 
performance we also made the following 
enhancements: value and status details (not the 
data value) are only converted to Tcl objects 
when a callback or get operation is performed.  
The results of all commands are returned as Tcl 
objects. A fast evaluation procedure was created 
to handle callback evals and call the C 
procedure directly to eliminate the conversion to 
byte code. Rather than using append functions 
when returning a list of values to the Tcl 
application we preallocate an array of object 
pointers, create the objects, then convert it to a 
list object. 
 
The ISP extension also implements the ISP 
heartbeat function such that if the ISP Server or 
the client application does not respond for 10 
seconds, an automatic disconnect will occur. 
The extension will automatically attempt to 
reconnect every 10 seconds using the Tcl timer 
handler. When the connection is re-established, 
all subscribed, published, or filtered parameters 
will be resent to the ISP Server. 
 
When a parameter is unsubscribed, the interface 
sends a �Missing� status to all existing callbacks 
then deletes the hash table entry, structure, and 
all associated callbacks from the internal storage 
area to insure old and possibly wrong data is not 
used. Attempts to get an unsubscribed 
parameter, or if the subscribe was rejected, will 
return an error. 
 
Overall the extension provides a very efficient 
interface for processing telemetry data. During 
testing, when we subscribed to 95,000 symbols, 
the CPU load for handling data updates was 
negligible with a virtual memory size of 75 MB 
for cyclic evaluations and 42 MB for immediate 
evaluations. It should be noted, that this tool did 
not do display updates. 
 

 
 
 



6 

Command Returns 
isp::isp help Extension help 
isp::isp init ?args �? Initialize context 
contextName callback type command ?args ...? Add or remove callback command for ISP packet 
contextName cget ?args �? Get context configuration details 
contextName connect Connect to the ISP Server 
contextName deregister type symbol command 
?args ...? 

Deregister the callback command for data or status 
update. 

contextName destroy Destroy the context and Tcl command 
contextName enable Enable the ISP Server connection 
contextName disable Disable the ISP Server connection 
contextName disconnect Disconnect from the ISP Server 
contextName filter ?symbol? ?args? Set filter(s) for parameter in ISP Server 
contextName get symbol ?args? Get parameter value or status details 
contextName publish ?symbol? ?args? Enable publication of parameter 
contextName query flag Query ISP Server for status 
contextName recycle Disconnect then reconnect to the ISP Server 
contextName refresh Request the ISP Server resend the value and 

status for all subscribed parameters 
contextName register type symbol ?command? 
?args ...? 

Register the callback command for data or status 
update. 

contextName set symbol ?args? Publish a value and/or status for parameter 
contextName subscribe ?symbol? ?-mask value? 
?symbol -mask value ...? 

Subscribe to a parameter 

contextName unpublish symbol Disable publication of parameter 
contextName unsubscribe symbol ?symbol ...? Unsubscribe to a parameter 

Table 2: ISP Extension Command Usage Summary 
 
5. Testing 
 
The Software Management Plan (SMP) defines 
our testing process. It defines the required 
guidelines for the development, testing, and 
certification for all MCC applications. In addition 
to this, any application which affects processed 
telemetry or commands that are uplinked to ISS 
such that a user cannot verify the calculation, 
also falls under the Critical Processor 
Certification guidelines. These documents were 
developed from the perspective of compiled 
code so we have had to make some minor 
changes for Tcl applications. For the testing, we 
perform verification (a.k.a. unit testing), 
validation (a.k.a. integrated testing), and 
certification testing (in as flight-like an 
environment as possible). 
 
To test the capabilities provided by the NRS and 
ISP extensions, we developed a variety of test 
tools. Although the purpose was to exercise the 

functionality of the extensions, they proved 
flexible enough to provide a base for subsequent 
applications. 
 
The first test tool is a GUI application that 
provides the user with complete access to all of 
the ISP extension functionality. It displays a set 
of ISS telemetry parameters called Program 
Unique Identifiers (PUI) along with the current 
value and status and also basic ISP Server 
status. It also has the capability to show a 
history of functions performed by the user. 
General functionality is available from the 
menubar and parameter specific functions are 
available from a pop-up menu. This tool made 
testing much easier than previous ISP test tools 
which required a combination of command line 
tools and difficult to use GUIs. The tool proved 
so useful, it uncovered 10 previously unknown 
problems with ISP APIs and the ISP Servers 
and will be used to test subsequent releases of 
the ISP system. 

 



7 

 
Figure 2: ISP Test display 

 
Since ISS flight control is a 24/7 operation with 
many applications running for weeks or months 
between restarts, we also instituted stress 
testing. These tests were run continuously to 
exercise the init/destroy, connect/disconnect, 
subscribe/unsubscribe, publish/set/unpublish, 
register/deregister, and steady-state operations 
for at least 24 hours yielding anywhere from 
40,000 to 60,000 cycles. This was very useful in 
finding memory leaks and other unstable areas 
of code. This testing also provided a baseline for 
CPU performance and memory usage under off-
nominal conditions. 
 
The second application was created to exercise 
all of the valid and invalid permutations allowed 
by the ISP extension. Since Tcl is a scripting 
language, we decided to use its scripting 
capabilities to automate testing and to split the 
original application into several applications. The 
first one would step through test cases of each 
major function of the interface, another one 
would subscribe to all 95000 valid parameters 
and report on the delay between data cycles, 
and the last one exercised connecting and 
publishing data to one ISP Server and receiving 
the same data through another ISP Server. 
 

Likewise a similar test application was created 
for the NRS extension. It steps through each 
support function and passes both valid and 
invalid data to the register, deregister, and 
search functions. This tool also doubles as the 
stress tester by continuously running through all 
test cases for at least 24 hours. 
 
 
6. Applications 
 
Existing MCC applications were developed for 
use on the X11 platform. These applications 
were typically coded in either C or C++. This 
resulted in the typical development limitations 
where changes were costly, time consuming, 
and difficult to implement. Several of these 
applications make use of Meta data files to allow 
easy definition of telemetry, commands, and 
computations though most only support one of 
these types. The application that came closest 
to supporting all of these functions was part of 
the Common Display Development Team 
(CDDT). Both the crew on ISS and flight 
controllers in the MCC use this application. This 
application is coded in C++ and combines the 
use of telemetry, computations, and commands 
on the same displays using XML data files. The 
main limitation of this application is its 



8 

dependency on the ISS software configuration, 
which limits the delivery of updated data files to 
once or twice a year. Additionally, the 
application has limited graphical capabilities and 
a large backlog of deficiencies. 
 
With the capabilities provided by the NRS and 
ISP extensions, we were able to develop several 
applications to address the above limitations and 
improve ISS operations. The current focus is on 
filling the gaps in the existing capabilities rather 
than duplicating an existing display. 
 
The Caution and Warning (C&W) Management 
application is used to monitor changes in the 
C&W system on ISS and log them to a ground 
database. This consists of tracking when events 
go into alarm, return to normal, and their current 
annunciation state. Tcl/Tk was chosen since it 
allowed us to use a HTTP/XML client/server 
interface with a quick turn around for changes 
and easy to use displays. Previously this was 
tracked using a spreadsheet posted to a web 
page. We frequently had issues with the 
spreadsheet getting out of sync with the onboard 
system. 
 
The biggest issue with development of the C&W 
management application is the idiosyncrasies of 
telemetry updates. C&W uses a queue of the 
last 20 C&W events from the primary computer 
on the US Segment of ISS and several counter 
and pointer parameters to determine when an 
event has occurred. Each event consists of 7 
parameters. However, since the parameters are 
in different telemetry frames and packets may 
be dropped or corrupted (packets are not 
checksummed) along the way in addition to the 
differences in the data update rate, it is very 
difficult to know precisely when or what event 
has occurred. This has led to additional logic to 
correlate event and counter updates and to filter 
out ratty data. 
 
The External Camera Control application 
incorporates the Tcl/Tk ISP interface and the 
Tcl/Tk Command Server interface to support the 
Communications and Tracking Officers with 
managing the External cameras onboard ISS. 
The implementation of this application uses both 
a Tcl/Tk GUI interface and the Tcl/Tk keyboard 
bindings to rapidly uplink camera control 
commands for smother operations. In addition, 
this application offers the capability of entering a 
Pan and/or Tilt angle for the camera to 
transverse Pan/Tilt positioning. 

 
The previous method of controlling the ISS 
external cameras was with the CDDT displays. 
The CDDT display required the flight controller 
to select a directional button to build the 
command, then select a second �Are you sure� 
button to uplink the command, and finally the 
controller is required to wait for a response from 
the onboard system that the command was 
accepted. This approach added a systematically 
latency that hampered the flight controllers 
ability to control the camera.  
 
The Automated Procedure Viewer (APV) 
application was developed by CDDT. This 
application was designed to manage automated 
procedures that have been converted from 
manual procedures. These scripts are written in 
User Interface Language (UIL) that was 
developed by Charles Stark Draper Laboratory. 
When the APV application was ported into the 
MCC, the number of deficiencies rendered it 
unusable. At this point the flight control team 
decided to develop their own application, with 
the look and feel of APV, using Tcl/Tk. Tcl/Tk 
was chosen for its rapid development 
capabilities, and large library of widgets.  
 
Although there are existing displays to view 
telemetry, they are all limited in their ability to be 
configured. To address this we have also 
developed several applications that can display 
telemetry or perform computations using 
reconfiguration files or other dynamic input such 
that the application can use new data when it�s 
available rather than forcing the users to update 
the display or configuration files. 
 
 
7. Future Directions 
 
We are currently working on a commanding 
interface similar to the ISP and NRS extensions. 
These projects were delayed due to several 
issues in insuring the applications receive all 
command data updates and providing a way to 
associate data or requests sent to the Command 
Server with responses received by the 
application. Unlike the ISP interface, they won�t 
store all received data since the command 
database can be up to 50 MB in size depending 
on the number of commands in use and the 
system load. Also we plan to institute additional 
checks to insure commands are accurately 
uplinked. 



9 

 
We are also evaluating several other possible 
uses of the ISP, NRS, and new command 
interfaces.  
 
 
8. Conclusions 
 
Overall, we have not had any insurmountable 
problems in interfacing Tcl/Tk applications into 
ISS flight control operations. Analysis of the pros 

and cons of when to use Tcl/Tk has led to a new 
generation of tools that make flight control easier 
and more productive. Compared to previous 
applications, these applications were developed 
in a shorter period of time, with fewer defects, 
and with easier to use GUIs. We also did this 
while maintaining the existing rigorous 
Configuration Management and certification 
standards prior to their use during ISS 
operations.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright   2004  by United Space Alliance, LLC. Published by Stephen K. Long with permission. These 
materials are sponsored by the National Aeronautics and Space Administration under Contract NAS9-
20000. The U.S. Government retains a paid-up, nonexclusive, irrevocable worldwide license in such 
materials to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and 
display publicly, by or on behalf of the U.S. Government. All other rights are reserved by the copyright 
owner.  
 


